MATHEMATICS 322

ASSIGNMENT 1

Due: September 9, 2015
A Basic Non-Autonomous Case
01 Let I be an open interval in \mathbf{R} and let a and b be functions defined on I. Let $V=I \times \mathbf{R}$. Let \mathcal{F} be the mapping carrying V to \mathbf{R}, defined as follows:

$$
\mathcal{F}(t, x):=-a(t) x+b(t) \quad((t, x) \in V)
$$

Let s be a number in J and let w be a member of \mathbf{R}. Let γ be the maximum integral curve for \mathcal{F} :

$$
\begin{equation*}
\gamma^{\circ}(t)+a(t) \gamma(t)=b(t) \quad(t \in I) \tag{o*}
\end{equation*}
$$

such that:

$$
(\bullet *) \quad \gamma(s)=w
$$

Show that:

$$
\gamma(t)=e^{-A(t)} B(t) \quad(t \in I)
$$

where:

$$
A^{\circ}(t)=a(t), \quad A(s)=0 ; \quad B^{\circ}(t)=e^{A(t)} b(t), \quad B(s)=w
$$

Why is the domain J for γ equal precisely to I ? For the case in which $b=0$, note that:

$$
\gamma^{\circ}(t)+a(t) \gamma(t)=0 \quad(t \in I)
$$

$$
\gamma(s)=w
$$

and:

$$
\gamma(t)=e^{-A(t)} w \quad(t \in I)
$$

Flows
02^{\bullet} Let F be the mapping carrying $V=\mathbf{R}^{1}$ to \mathbf{R}^{1}, defined as follows:

$$
F(x)=1+x^{2} \quad(x \in \mathbf{R})
$$

One obtains the following ODE:

$$
\begin{equation*}
x^{\circ}=1+x^{2} \tag{o}
\end{equation*}
$$

Describe the flow domain Δ and the flow mapping γ for F. Start by introducing the mapping γ defined as follows:

$$
\gamma(t)=\tan (t) \quad\left(-\frac{\pi}{2}<t<\frac{\pi}{2}\right)
$$

and by verifying that γ is the maximum integral curve for F passing through 0 at time 0 .
03^{\bullet} Let F be the mapping carrying \mathbf{R}^{2} to \mathbf{R}^{2}, defined as follows:

$$
F\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right) \quad\left(\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}\right)
$$

One obtains the following ODE:

$$
\begin{align*}
& x_{1}^{\circ}=-x_{2} \tag{০}\\
& x_{2}^{\circ}=x_{1}
\end{align*}
$$

Describe the flow domain Δ and the flow mapping γ for F. Start by introducing the mapping γ defined as follows:

$$
\gamma(t)=(\cos (t), \sin (t)) \quad(t \in \mathbf{R})
$$

and by verifying that γ is the maximum integral curve for F passing through $(1,0)$ at time 0 .

Angular Momentum

04^{\bullet} Return to the Gravitational Equation of Newton in articles 33° and 34° of Chapter 1. Let M (the angular momentum per unit mass) be the mapping carrying $V=\left(\mathbf{R}^{3} \backslash\{\mathbf{0}\}\right) \times \mathbf{R}^{3}$ to \mathbf{R}^{3}, defined as follows:

$$
M(x, v)=x \times v \quad((x, v) \in V)
$$

Let γ be an integral curve for F :

$$
\gamma(t)=(x(t), v(t))=\left(x(t), x^{\circ}(t)\right) \quad(t \in J)
$$

Show that the mapping:

$$
M\left(x(t), x^{\circ}(t)\right)
$$

carrying J to \mathbf{R}^{3} is constant.

Confinement

05^{\bullet} Let F be the mapping carrying \mathbf{R}^{2} to \mathbf{R}^{2}, defined as follows:

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-x_{2}-1, x_{1}+x_{1} x_{2}\right) \quad\left(\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}\right)
$$

One obtains the following ODE:

$$
\begin{align*}
& x_{1}^{\circ}=x_{1}^{2}-x_{2}-1 \\
& x_{2}^{\circ}=x_{1}+x_{1} x_{2} \tag{○}
\end{align*}
$$

Let C be the subset of \mathbf{R}^{2} consisting of all points $\left(w_{1}, w_{2}\right)$ for which $w_{1}^{2}+w_{2}^{2}=$ 1. Of course, C is the unit circle in \mathbf{R}^{2}. Let γ be an integral curve for F :

$$
\gamma(t)=\left(x_{1}(t), x_{2}(t)\right) \quad(t \in J)
$$

Show that either $\gamma(J) \subseteq C$ or $\gamma(J) \cap C=\emptyset$. To that end, let h be the function defined as follows:

$$
h\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \quad\left(\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}\right)
$$

Verify that:

$$
(\nabla h)\left(x_{1}, x_{2}\right) \bullet F\left(x_{1}, x_{2}\right)=2 x_{1}\left(x_{1}^{2}+x_{2}^{2}-1\right)
$$

Show that if $\gamma(J) \cap C \neq \emptyset$ then $\gamma(J) \subseteq C$. Informally, one may say that the integral curves for F must lie entirely inside C, on C, or outside C. Note that there is just one critical point for F. In fact, $F\left(x_{1}, x_{2}\right)=(0,0)$ iff $\left(x_{1}, x_{2}\right)=(0,-1)$. Conclude that:

$$
\gamma(J) \subseteq C \Longrightarrow \gamma(J)=\{(0,-1)\} \text { or } \gamma(J)=C \backslash\{(0,-1)\}
$$

