MATHEMATICS 321

ASSIGNMENT 9: Solutions
Due: November 11, 2015
01^{\bullet} Let X be a measure space, supplied with a borel algebra \mathcal{A} and a measure μ. Let:

$$
E_{1}, E_{2}, \ldots, E_{n}, \ldots
$$

be a sequence of sets in \mathcal{A}. For each x in X, let J_{x} be the set of all positive integers n such that $x \in E_{n}$. Let A be the subset of X consisting of all points x for which J_{x} is infinite:

$$
A=\bigcap_{k=1}^{\infty} \bigcup_{\ell=k}^{\infty} E_{\ell}
$$

Note that A is contained in \mathcal{A}. Show that if:

$$
\begin{equation*}
\sum_{\ell=1}^{\infty} \mu\left(E_{\ell}\right)<\infty \tag{*}
\end{equation*}
$$

then:

$$
\mu(A)=0
$$

[Since the series $(*)$ converges, we have:

$$
\lim _{k \rightarrow \infty} \sum_{\ell=k}^{\infty} \mu\left(E_{\ell}\right)=0
$$

In turn, for each k :

$$
\begin{aligned}
\mu(A) & \leq \mu\left(\bigcup_{\ell=k}^{\infty} E_{\ell}\right) \\
& \leq \sum_{\ell=k}^{\infty} \mu\left(E_{\ell}\right)
\end{aligned}
$$

By relation $(*), \mu(A)=0$.]
02^{\bullet} Let X_{1} and X_{2} be sets, let \mathcal{A}_{1} and \mathcal{A}_{2} be borel algebras of subsets of X_{1} and X_{2}, respectively, and let μ be a measure defined on \mathcal{A}_{1}. Let F be a borel mapping carrying X_{1} to X_{2}. Let ν be the measure defined on \mathcal{A}_{2} which assigns to each borel set B in \mathcal{A}_{2} the following value:

$$
\nu(B) \equiv \mu\left(F^{-1}(B)\right)
$$

Very often, we denote ν by $F_{*}(\mu)$. In turn, let g be a complex valued borel function defined on X_{2}. Let f be the complex valued (borel) function defined on X_{1} which assigns to each member x of X_{1} the following value:

$$
f(x)=g(F(x))
$$

Very often, we denote f by $F^{*}(g)$. Show that if g is integrable with respect to ν then f is integrable with respect to μ and:

$$
\begin{equation*}
\int_{X_{1}} f(x) \mu(d x)=\int_{X_{2}} g(y) \nu(d y) \tag{*}
\end{equation*}
$$

That is:

$$
\int_{X_{1}} F^{*}(g) \cdot \mu=\int_{X_{2}} g \cdot F_{*}(\mu)
$$

[We may as usual decompose g as follows:

$$
g=u+i v=\left(u^{+}-u^{-}\right)+i\left(v^{+}-v^{-}\right)
$$

where $0 \leq u^{+}$, and so forth. Consequently, we need only respond to the case in which $0 \leq g$. If g is a characteristic function then relation $(*)$ is obvious. If g is a simple function (that is, a (nonnegative) linear combination of characteristic functions) then relations $(*)$ follows by linearity of integration. For the general case, we need only introduce an increasing sequence of simple functions converging pointwise to g, then apply the Monotone Convergence Theorem.]

