MATHEMATICS 321

ASSIGNMENT 9: Solutions Due: November 11, 2015

01[•] Let X be a measure space, supplied with a borel algebra \mathcal{A} and a measure μ . Let:

$$E_1, E_2, \ldots, E_n, \ldots$$

be a sequence of sets in \mathcal{A} . For each x in X, let J_x be the set of all positive integers n such that $x \in E_n$. Let A be the subset of X consisting of all points x for which J_x is infinite:

$$A = \bigcap_{k=1}^{\infty} \bigcup_{\ell=k}^{\infty} E_{\ell}$$

Note that A is contained in \mathcal{A} . Show that if:

$$(*) \qquad \qquad \sum_{\ell=1}^{\infty} \mu(E_{\ell}) < \infty$$

then:

$$\mu(A) = 0$$

[Since the series (*) converges, we have:

$$\lim_{k\to\infty}\sum_{\ell=k}^\infty \mu(E_\ell)=0$$

In turn, for each k:

$$\mu(A) \le \mu(\bigcup_{\ell=k}^{\infty} E_{\ell})$$
$$\le \sum_{\ell=k}^{\infty} \mu(E_{\ell})$$

By relation (*), $\mu(A) = 0.$]

02[•] Let X_1 and X_2 be sets, let \mathcal{A}_1 and \mathcal{A}_2 be borel algebras of subsets of X_1 and X_2 , respectively, and let μ be a measure defined on \mathcal{A}_1 . Let F be a borel mapping carrying X_1 to X_2 . Let ν be the measure defined on \mathcal{A}_2 which assigns to each borel set B in \mathcal{A}_2 the following value:

$$\nu(B) \equiv \mu(F^{-1}(B))$$

Very often, we denote ν by $F_*(\mu)$. In turn, let g be a complex valued borel function defined on X_2 . Let f be the complex valued (borel) function defined on X_1 which assigns to each member x of X_1 the following value:

$$f(x) = g(F(x))$$

Very often, we denote f by $F^*(g)$. Show that if g is integrable with respect to ν then f is integrable with respect to μ and:

(*)
$$\int_{X_1} f(x)\mu(dx) = \int_{X_2} g(y)\nu(dy)$$

That is:

$$\int_{X_1} F^*(g) \cdot \mu = \int_{X_2} g \cdot F_*(\mu)$$

[We may as usual decompose g as follows:

$$g = u + iv = (u^{+} - u^{-}) + i(v^{+} - v^{-})$$

where $0 \le u^+$, and so forth. Consequently, we need only respond to the case in which $0 \le g$. If g is a characteristic function then relation (*) is obvious. If g is a simple function (that is, a (nonnegative) linear combination of characteristic functions) then relations (*) follows by linearity of integration. For the general case, we need only introduce an increasing sequence of simple functions converging pointwise to g, then apply the Monotone Convergence Theorem.]