MATHEMATICS 321

ASSIGNMENT 6: SOLUTIONS

Due: October 14, 2015
01° Let \mathbf{D} be the unit disk in \mathbf{C}, consisting of all complex numbers ζ such that $|\zeta| \leq 1$. Let \mathbf{A}^{\prime} be the subalgebra of $\mathbf{C}(\mathbf{D})$ consisting of all functions of the form:

$$
f(\zeta)=\sum_{j=0}^{n} \alpha_{j} \zeta^{j} \quad(\zeta \in \mathbf{D})
$$

where n is any nonnegative integer and where the various α_{j} are any complex numbers. Let $\mathbf{A}^{\prime \prime}$ be the subalgebra of $\mathbf{C}(\mathbf{D})$ consisting of all functions of the form:

$$
g(\zeta)=\sum_{j=0}^{n} \sum_{k=0}^{n} \beta_{j k} \zeta^{j} \zeta^{* k} \quad(\zeta \in \mathbf{D})
$$

where n is any nonnegative integer and where the various $\beta_{j k}$ are any complex numbers. Verify that both \mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$ separate points in \mathbf{D}. Show that $\mathbf{A}^{\prime \prime}$ is involutory while \mathbf{A}^{\prime} is not. Prove that $\mathbf{A}^{\prime \prime}$ is dense in $\mathbf{C}(\mathbf{D})$ while \mathbf{A}^{\prime} is not.
[Obviously, \mathbf{A}^{\prime} meets the conditions of the hypothesis of Stone's Theorem, with the possible exception of the condition that it be involutory. We infer that if, in fact, \mathbf{A}^{\prime} is involutory then (by Stone's Theorem) $\mathbf{C}(\mathbf{D})=\operatorname{clo}\left(\mathbf{A}^{\prime}\right)$. Let h be the function in $\mathbf{C}(\mathbf{D})$ defined as follows:

$$
h(\zeta)=\zeta^{*}
$$

where ζ is any member of \mathbf{D}. We contend that h is not contained in $\operatorname{clo}\left(\mathbf{A}^{\prime}\right)$. Of course, it would follow that $\operatorname{clo}\left(\mathbf{A}^{\prime}\right) \neq \mathbf{C}(\mathbf{D})$, hence that \mathbf{A}^{\prime} is not involutory. Let us suppose to the contrary that h is in $\operatorname{clo}\left(\mathbf{A}^{\prime}\right)$. Under this supposition, we may introduce a function:

$$
f(\zeta)=\sum_{j=0}^{n} \alpha_{j} \zeta^{j} \quad(\zeta \in \mathbf{D})
$$

in \mathbf{A}^{\prime} such that:

$$
\left|\zeta^{*}-f(\zeta)\right| \leq \frac{1}{2} \quad(\zeta \in \mathbf{D})
$$

Hence:

$$
\left|1-\sum_{j=0}^{n} \alpha_{j} \zeta^{j+1}\right| \leq \frac{1}{2} \quad(|\zeta|=1)
$$

That is:

$$
\left|1-\sum_{j=0}^{n} \alpha_{j} \exp (i(j+1) \theta)\right| \leq \frac{1}{2} \quad(0 \leq \theta<2 \pi)
$$

At this point, let us recall that:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i k \theta) d \theta= \begin{cases}0 & \text { if } k \neq 0 \\ 1 & \text { if } k=0\end{cases}
$$

Now, from the preceding inequality, we would obtain:

$$
1 \leq \frac{1}{2}
$$

a contradiction. Consequently, our supposition is false. Therefore, our contention is true.]
02° Let X_{1} and X_{2} be compact spaces. Let f be a complex valued function defined and continuous on $X_{1} \times X_{2}$. Let r be any positive number. Show that there are a nonnegative integer ℓ, complex valued functions:

$$
g_{j} \quad(0 \leq j \leq \ell)
$$

defined and continuous on X_{1}, and complex valued functions:

$$
h_{j} \quad(0 \leq j \leq \ell)
$$

defined and continuous on X_{2} such that, for each (ξ, η) in $X_{1} \times X_{2}$:

$$
\left|f(\xi, \eta)-\sum_{j=0}^{\ell} g_{j}(\xi) h_{j}(\eta)\right| \leq r
$$

[The various functions of the form:

$$
\sum_{j=0}^{\ell} g_{j}(\xi) h_{j}(\eta)
$$

compose an involutory subalgebra \mathbf{A} of $\mathbf{C}\left(X_{1} \times X_{2}\right)$. We contend that \mathbf{A} separates points in $X_{1} \times X_{2}$. To prove our contention, we appeal to the following more general result. Let X be a metric space, with metric d, and let w be a point in X. Let f_{w} be the (real valued) function defined on X as follows:

$$
f_{w}(z)=d(z, w)
$$

where z is any point in X. By the triangle inequality:

$$
d(x, w) \leq d(x, y)+d(y, w), \quad d(y, w) \leq d(y, x)+d(x, w)
$$

where x and y are any points in X. Hence:

$$
\left|f_{w}(x)-f_{w}(y)\right| \leq d(x, y)
$$

It follows that f is continuous. Finally, let u and v be any points in X for which $u \neq v$. Obviously, f_{v} separates u and v :

$$
0<d(u, v)=f_{v}(u), \quad f_{v}(v)=0
$$

Now our contention follows easily.]
03° Let \mathbf{T} be the unit circle in \mathbf{C} consisting of all complex numbers τ such that $|\tau|=1$. Let \mathbf{A} be the subalgebra of $\mathbf{C}(\mathbf{T})$ consisting of all functions of the form:

$$
f(\tau)=\sum_{j=-n}^{n} \alpha_{j} \tau^{j}=\sum_{j=-n}^{n} \alpha_{j} e^{i j \theta} \quad\left(\tau=e^{i \theta}\right)
$$

where n is any nonnegative integer and where the various α_{j} are any complex numbers. Verify that \mathbf{A} separates points in \mathbf{T}. Show that \mathbf{A} is involutory. Conclude that \mathbf{A} is dense in $\mathbf{C}(\mathbf{T})$.

04 - With reference to the foregoing example, we describe an interesting fact. Let f be any function in $\mathbf{C}(\mathbf{T})$. We form the Fourier Coefficients of f as follows:

$$
\gamma_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) e^{-i j \theta} d \theta
$$

We form the corresponding Fourier Sequences:

$$
s_{n}\left(e^{i \theta}\right)=\sum_{j=-n}^{n} \gamma_{j} e^{i j \theta}, \quad \sigma_{m}\left(e^{i \theta}\right)=\frac{1}{m} \sum_{n=0}^{m-1} s_{n}\left(e^{i \theta}\right)
$$

In general, s represents f rather loosely. It converges to f in the Integral Metric, a rather weak condition. However, σ converges to f uniformly.

