MATHEMATICS 321

ASSIGNMENT 5

Due: October 7, 2015
01^{\bullet} Let P_{1}, P_{2}, and P_{3} be three distinct points in \mathbf{R}^{2}. Let F_{1}, F_{2}, and F_{3} be the mappings carrying \mathbf{R}^{2} to itself, defined as follows:

$$
F_{1}(X)=\frac{1}{2}\left(X+P_{1}\right), \quad F_{2}(X)=\frac{1}{2}\left(X+P_{2}\right), \quad F_{3}(X)=\frac{1}{2}\left(X+P_{3}\right)
$$

where X is any point in \mathbf{R}^{2}. Note that F_{1}, F_{2}, and F_{3} are contraction mappings, with contraction constants having the common value $1 / 2$. Let \mathcal{F} be the mapping carrying $\mathcal{H}\left(\mathbf{R}^{2}\right)$ to itself, defined as follows:

$$
\mathcal{F}(L)=F_{1}(L) \cup F_{2}(L) \cup F_{3}(L)
$$

where L is any member of $\mathcal{H}\left(\mathbf{R}^{2}\right.$. Show that \mathcal{F} is a contraction mapping. What is the contraction constant for \mathcal{F} ? Let T be the (closed) triangular area defined by P_{1}, P_{2} and P_{3}. Draw a picture of the set:

$$
K=\mathcal{F}^{3}(T)
$$

in $\mathcal{H}\left(\mathbf{R}^{2}\right)$.
[Let δ be the hausdorff metric on $\mathcal{H}\left(\mathbf{R}^{2}\right)$. Let L and M be any sets in $\mathcal{H}\left(\mathbf{R}^{2}\right)$. Let τ be any positive number for which $\delta(L, M)<\tau$. It is precisely the same to say that $L \subseteq N_{\tau}(M)$ and $M \subseteq N_{\tau}(L)$. (Just to be absolutely clear, let us note that the foregoing logical equivalence in the definition of $\delta(L, M)$ depends upon the fact that L and M are compact. Why?) Obviously:

$$
F_{j}(L) \subseteq N_{\tau / 2}\left(F_{j}(M)\right) \text { and } F_{j}(L) \subseteq N_{\tau / 2}\left(F_{j}(M)\right) \quad(1 \leq j \leq 3)
$$

so that:

$$
\delta\left(F_{j}(L), F_{j}(M)\right)<\frac{\tau}{2}
$$

It follows easily that:

$$
\delta(\mathcal{F}(L), \mathcal{F}(M))<\frac{\tau}{2}
$$

Consequently:

$$
\delta(\mathcal{F}(L), \mathcal{F}(M)) \leq \frac{1}{2} \delta(L, M)
$$

]
02^{\bullet} Let \mathbf{R} be the set of all real numbers, supplied with the usual metric. Let f be a continuous complex valued function defined on \mathbf{R}. We say that f has compact support iff there is a compact subset K of \mathbf{R} such that, for each number x in $\mathbf{R} \backslash K, f(x)=0$. Of course, such a function must be bounded. Let \mathbf{X} be the set of all continuous complex valued functions defined on \mathbf{R}, having compact support. Let d be the uniform metric on \mathbf{X} :

$$
d\left(f_{1}, f_{2}\right)=\sup _{x \in \mathbf{R}}\left|f_{1}(x)-f_{2}(x)\right| \quad\left(f_{1}, f_{2} \in \mathbf{X}\right)
$$

Let Q be the mapping carrying \mathbf{X} to itself, defined as follows:

$$
Q(f)(x)=x f(x) \quad(f \in \mathbf{X}, x \in \mathbf{R})
$$

Show that Q is continuous on \mathbf{X} or show that it is not so.
[Let $\overline{0}$ be the constant function defined on \mathbf{R} with constant value 0 . Of course, $\overline{0}$ lies in \mathbf{X}. Obviously, $Q(\overline{0})=\overline{0}$. Let n be any positive integer. Let f_{n} be a function in \mathbf{X} such that $d\left(f_{n}, \overline{0}\right) \leq 1 / n$ and such that $f_{n}(n)=1 / n$. Clearly, $1 \leq d\left(Q\left(f_{n}\right), Q(\overline{0})\right)$. Now, $f_{n} \longrightarrow \overline{0}$ but $Q\left(f_{n}\right) \nrightarrow \overline{0}$. Consequently, Q is not continuous at $\overline{0}$.]
03^{\bullet} Let X be a metric space. We say that X satisfies Condition C^{\bullet} iff, for any decreasing sequence:

$$
\cdots \subseteq C_{j} \subseteq \cdots \subseteq C_{3} \subseteq C_{2} \subseteq C_{1}
$$

of nonempty closed subsets of X, the intersection:

$$
\bigcap_{j=1}^{\infty} C_{j}
$$

is nonempty. Show that if X satisfies Condition C^{\bullet} then X is compact.
[Let σ be a sequence in X. For each positive integer j, let C_{j} be the (nonempty closed) subset of X defined as follows:

$$
C_{j}=\operatorname{clo}\left(\left\{\sigma_{j}, \sigma_{j+1}, \sigma_{j+2}, \ldots\right\}\right)
$$

By Condition C^{\bullet}, we may introduce a member w of the intersection of the foregoing sets:

$$
w \in \bigcap_{j=1}^{\infty} C_{j}
$$

Now, by induction (and by the characteristic property of the closure of a set), we may introduce a strictly increasing sequence:

$$
j_{1}<j_{2}<j_{3}<\cdots
$$

of positive integers such that:

$$
\sigma_{j_{1}} \in N_{1}(w), \sigma_{j_{2}} \in N_{1 / 2}(w), \sigma_{j_{3}} \in N_{1 / 3}(w), \sigma_{j_{4}} \in N_{1 / 4}(w), \ldots
$$

In this way, we obtain a subsequence of σ which converges to w.]

