MATHEMATICS 321

ASSIGNMENT 3

Due: September 23, 2015
01^{\bullet} Let $I \equiv[0,1]$ be the closed unit interval in \mathbf{R}. Let F be a continuous mapping carrying I to itself. Show that there must be at least one number x in I such that $F(x)=x$.
02^{\bullet} Let X_{1} and X_{2} be metric spaces and let F be a mapping carrying X_{1} to X_{2}. Let Γ be the graph of F, that is, let Γ be the subset of $X_{1} \times X_{2}$ defined as follows:

$$
\Gamma=\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}: x_{2}=F\left(x_{1}\right)\right\}
$$

Show that if F is continuous then X_{1} and Γ are homeomorphic.
[We note first that the product space $X_{1} \times X_{2}$ carries certain properties, by definition. In particular, let σ_{1} and σ_{2} be sequences in X_{1} and X_{2}, respectively. Let σ be the corresponding sequence in $X_{1} \times X_{2}$, of which σ_{1} and σ_{2} are the components:

$$
\sigma=\left(\sigma_{1}, \sigma_{2}\right): \quad \sigma(j)=\left(\sigma_{1}(j), \sigma_{2}(j)\right) \quad\left(j \in \mathbf{Z}^{+}\right)
$$

By the definition of the product metric on $X_{1} \times X_{2}$, we know that, for any u_{1} in X_{1} and for any u_{2} in X_{2} :

$$
\sigma_{1} \longrightarrow u_{1}, \sigma_{2} \longrightarrow u_{2} \quad \text { iff } \quad \sigma \longrightarrow\left(u_{1}, u_{2}\right)
$$

Let us introduce the (bijective) mapping H carrying X_{1} to Γ :

$$
H(x)=(x, F(x)) \quad\left(x \in X_{1}\right)
$$

Clearly:

$$
\sigma_{1} \longrightarrow u_{1} \quad \Longrightarrow \quad H \cdot \sigma_{1}=\left(\sigma_{1}, F \cdot \sigma_{1}\right) \longrightarrow\left(u_{1}, F\left(u_{1}\right)\right)=H\left(u_{1}\right)
$$

while:

$$
\left(\sigma_{1}, \sigma_{2}\right) \longrightarrow\left(u_{1}, u_{2}\right) \quad \Longrightarrow \quad H^{-1} \cdot\left(\sigma_{1}, \sigma_{2}\right)=\sigma_{1} \longrightarrow u_{1}=H^{-1}\left(u_{1}, u_{2}\right)
$$

It follows that H is a homeomorphism.]
03^{\bullet} Let X be a metric space, with metric d. One says that X is connected iff, for any subsets U and V of X, if U and V are open, if $U \cap V=\emptyset$, and if $U \cup V=X$ then $U=\emptyset$ or $V=\emptyset$. For instance, \mathbf{R}^{2} (with the conventional metric) is connected. See the fourth problem in the first assignment. Again, let X be a metric space, with metric d. Let Y be a subset of X. Of course, both Y and $c l o(Y)$ are themselves metric spaces, as one may restrict d to $Y \times Y$ and $\operatorname{clo}(Y) \times \operatorname{clo}(Y)$, respectively. Prove that if Y is connected then $c l o(Y)$ is connected. Show by example that $c l o(Y)$ may be connected while Y is not.
[Of course, we view Y and $c l o(Y)$ as subspaces of X. As a consequence, the various open subsets of Y are the intersections with Y of the various open subsets of X. The same is true for $\operatorname{clo}(Y)$. Let us assume that $\operatorname{clo}(Y)$ is not connected. By this assumption, we may introduce open subsets U and V of X such that:

$$
\begin{equation*}
U \cap c l o(Y) \neq \emptyset, \quad V \cap c l o(Y) \neq \emptyset \tag{1}
\end{equation*}
$$

while:

$$
(U \cap \operatorname{clo}(Y)) \cap(V \cap \operatorname{clo}(Y))=\emptyset, \quad(U \cap \operatorname{clo}(Y)) \cup(V \cap \operatorname{clo}(Y))=\operatorname{clo}(Y)
$$

It follows that:

$$
(U \cap Y) \cap(V \cap Y)=\emptyset, \quad(U \cap Y) \cup(V \cap Y)=Y
$$

because $Y \subseteq \operatorname{clo}(Y)$. If $U \cap Y=\emptyset$ then $U \cap \operatorname{clo}(Y))=\emptyset$, which contradicts (1); hence, $U \cap Y \neq \emptyset$. Similarly, $V \cap Y \neq \emptyset$. Now we may infer that Y is not connected. The argument is complete.]

