EXAMINATION

MATHEMATICS 321

Due: L306, High Noon, Wednesday, December 16, 2015 NO LIVING SOURCES
01^{\bullet} Let X be a metric space, with metric d. Let σ and τ be cauchy sequences in X. Let ρ be the sequence in \mathbf{R}, defined as follows:

$$
\rho(j)=d(\sigma(j), \tau(j)) \quad\left(j \in \mathbf{Z}^{+}\right)
$$

Show that ρ is convergent. For a running start, note the following relations:

$$
\begin{aligned}
d(\sigma(k), \tau(k) & \leq d(\sigma(k), \sigma(\ell))+d(\sigma(\ell), \tau(\ell))+d(\tau(\ell), \tau(k)) \\
d(\sigma(k), \tau(k))-d(\sigma(\ell), \tau(\ell)) & \leq d(\sigma(k), \sigma(\ell))+d(\tau(k), \tau(\ell))
\end{aligned}
$$

02^{\bullet} Let X be a metric space, with metric d. Let \mathcal{K} be a sequence of nonempty compact subsets of X :

$$
\mathcal{K}: \quad K_{1}, K_{2}, \ldots, K_{j}, \ldots
$$

Let \mathcal{K} be decreasing and let L be the intersection of the terms of \mathcal{K} :

$$
\cdots K_{j} \subseteq \cdots \subseteq K_{2} \subseteq K_{1}, \quad L=\bigcap_{j=0}^{\infty} K_{j}
$$

Show that $L \neq \emptyset$ and that \mathcal{K} converges to L relative to the hausdorff metric δ :

$$
\delta\left(K_{j}, L\right) \longrightarrow 0
$$

03^{\bullet} Let \mathbf{B} be the closed ball in \mathbf{R}^{3} centered at 0 with radius 1 . Let F be a mapping carrying \mathbf{B} to \mathbf{R}^{3} which meets the conditions that, for any members x, y, and z in \mathbf{B} :

$$
\|F(x)\| \leq 1 \quad \text { and } \quad\|F(y)-F(z)\| \leq\|y-z\|
$$

Let σ be a number for which $0<\sigma<1$. Let \mathbf{X} be the family:

$$
\mathbf{X}=\mathbf{M}((-\sigma, \sigma), \mathbf{B})
$$

composed of all continuous mappings α carrying $(-\sigma, \sigma)$ to \mathbf{B}. We supply \mathbf{X} with the uniform metric \mathbf{d}, as follows:

$$
\mathbf{d}\left(\alpha_{1}, \alpha_{2}\right)=\sup \left\{\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|:-\sigma<t<\sigma\right\}
$$

where α_{1} and α_{2} are any mappings in \mathbf{X}. We take it for granted that \mathbf{X} is a complete metric space. For each α in \mathbf{X}, let β be the mapping carrying $(-\sigma, \sigma)$ to \mathbf{R}^{3}, defined as follows:

$$
\beta(t)=\int_{0}^{t} F(\alpha(u)) d u \quad(-\sigma<t<\sigma)
$$

Verify that β is in \mathbf{X}. Having done so, introduce the mapping \mathbf{F} carrying \mathbf{X} to itself, defined as follows:

$$
\mathbf{F}(\alpha)=\beta \quad(\alpha \in \mathbf{X})
$$

Verify that \mathbf{F} is a contraction mapping. In fact, verify that, for any members α_{1} and α_{2} of \mathbf{X} :

$$
\mathbf{d}\left(\mathbf{F}\left(\alpha_{1}\right), \mathbf{F}\left(\alpha_{2}\right)\right) \leq \sigma \mathbf{d}\left(\alpha_{1}, \alpha_{2}\right)
$$

By the Contraction Mapping Theorem, there is precisely one γ in \mathbf{X} such that $\mathbf{F}(\gamma)=\gamma$. Obviously:

$$
\gamma(0)=0, \text { and } \gamma^{\circ}(t)=F(\gamma(t)) \quad(-\sigma<t<\sigma)
$$

04^{\bullet} Let X be a set, let \mathcal{A} be a borel algebra of subsets of X, and let μ be a measure defined on \mathcal{A} for which $\mu(X)=1$. Let K be a compact convex subset of \mathbf{C}. Let f be a complex valued borel function defined on X such that the range of f is included in K. Show that f is integrable with respect to μ and that:

$$
\int_{X} f(x) \mu(d x) \in K
$$

05^{\bullet} Let n be a positive integer. Let X be the set consisting of the integers x for which $0 \leq x \leq n$ and let Y be the unit interval:

$$
X=\{0,1,2, \ldots, n\}, \quad Y=[0,1]
$$

Let μ and ν be the uniform probability measures on X and Y, respectively. By definition, ν is the restriction of lebesgue measure λ to the unit interval, while μ stands as follows:

$$
\mu(\{x\})=\frac{1}{n+1} \quad(x \in X)
$$

Verify that:

$$
\int_{Y}(n+1)\binom{n}{x} y^{x}(1-y)^{n-x} \nu(d y)=1 \quad(x \in X)
$$

or take it for granted. Let Γ and Δ be the mappings carrying X to $M(Y)$ and Y to $M(X)$, respectively, characterized as follows:

$$
\begin{aligned}
& \Gamma(x)(B)=\int_{B}(n+1)\binom{n}{x} y^{x}(1-y)^{n-x} \nu(d y) \\
& \Delta(y)(A)=\sum_{x \in A}\binom{n}{x} y^{x}(1-y)^{n-x}
\end{aligned}
$$

where x and y are any members of X and Y, respectively, and where A and B are any borel subsets of X and Y, respectively. Verify that:

$$
\Gamma_{*}(\mu)=\nu, \quad \Delta_{*}(\nu)=\mu
$$

06^{\bullet} Let X be the set consisting of the eight members:

$$
(j, k, \ell) \quad(j, k, \ell \in\{0,1\})
$$

The members of X are the vertices of the unit cube in \mathbf{R}^{3}. Let \mathcal{A} be the borel algebra consisting of all subsets of X. Let μ be the measure on \mathcal{A} defined by the following relations:

$$
\begin{aligned}
& \mu(\{(0,0,0)\})=\mu(\{(1,1,0)\})=\mu(\{(1,0,1)\})=\mu(\{(0,1,1)\})=\frac{1}{4} \\
& \mu(\{(1,0,0)\})=\mu(\{(0,1,0)\})=\mu(\{(0,0,1)\})=\mu(\{(1,1,1)\})=0
\end{aligned}
$$

Let f, g, and h be the random variables defined on X as follows:

$$
f((j, k, \ell))=j, \quad g((j, k, \ell))=k, \quad h((j, k, \ell))=\ell \quad((j, k, \ell) \in X)
$$

Describe:

$$
f_{*}(\mu), g_{*}(\mu), h_{*}(\mu)
$$

and:

$$
(f \times g)_{*}(\mu),(f \times h)_{*}(\mu),(g \times h)_{*}(\mu)
$$

Verify that f and g are independent, that f and h are independent, that g and h are independent, but that f, g, and h are not independent.

