MATHEMATICS 321

ASSIGNMENT 11

Due: December 2, 2015
01^{\bullet} Let (X, \mathcal{A}, π) be a probability space. Let F be a random variable and $\mu=F_{*}(\pi)$ be the corresponding distribution. Specifically, let λ be a positive number and let μ be determined as follows:

$$
\mu(\{n\})=\exp (-\lambda) \frac{1}{n!} \lambda^{n} \quad(n=0,1,2, \ldots)
$$

Verify (again) that both the mean and the variance of μ equal λ. Let:

$$
F_{1}, F_{2}, F_{3}, \ldots
$$

be an independent sequence of random variables having common distribution μ. Let n be a positive integer. Let a and b be nonnegative numbers for which $a<b$. Let A be the set in \mathcal{A} defined by the following condition:

$$
x \in A \text { iff } a \leq\left(F_{1}(x)+F_{2}(x)+\cdots+F_{n}(x)\right) \leq b
$$

Apply the Central Limit Theorem to estimate $\mu(A)$. You should obtain a number of the form:

$$
\frac{1}{\sqrt{2 \pi}} \int_{r}^{s} \exp \left(-\frac{1}{2} y^{2}\right) d y
$$

where r and s depend upon a, b, and λ.
02^{\bullet} Let λ be lebesgue measure on \mathbf{R}^{+}. Verify the relation:

$$
\frac{1}{x}=\int_{(0, \infty)} e^{-x t} \lambda(d t)
$$

where x is any positive number. Apply the Theorem of Fubini to prove that:

$$
\lim _{a \rightarrow \infty} \int_{(0, a)} \frac{\sin x}{x} \lambda(d x)=\frac{\pi}{2}
$$

03^{\bullet} Let F be a borel mapping carrying \mathbf{R} to \mathbf{R}. Let Γ be the graph of F, which by definition consists of all points (x, y) in \mathbf{R}^{2} for which $y=F(x)$. Show that Γ is a borel subset of \mathbf{R}^{2}. Show that:

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} c h_{\Gamma}(x, y) \lambda(d x d y)=0 \tag{*}
\end{equation*}
$$

In the foregoing relation, $c h_{\Gamma}$ is the characteristic function of Γ and λ is lebesgue measure on \mathbf{R}^{2}.
04^{\bullet} Let λ be lebesgue measure on $[0,1]$ and let μ be the counting measure on $[0,1]$. By definition, $\mu(E)=|E|$, where E is any subset of $[0,1]$. In the foregoing relation, $|E|$ stands for the number of members of E. In particular, $|E|=\infty$ if E is infinite. Let $[0,1] \times[0,1]$ be supplied with the corresponding product measure $\lambda \times \mu$. Let f be the function defined on $[0,1] \times[0,1]$, which assigns to each point (x, y) in $[0,1] \times[0,1]$ the value 0 if $x \neq y$ and the value 1 if $x=y$. Of course, the values of f are finite and nonnegative. Verify that f is borel. Compute the two iterated integrals for f. Note that one of them equals 0 while the other equals 1 . Hence, the Theorem of Fubini does not apply in this case. Why?
05° Show that the Lebesgue Theory of Integration generalizes the Riemann Theory of Integration.

