MATHEMATICS 321 ASSIGNMENT 7 Due: October 28, 2015

Let $\bar{\mathbf{R}}_0^+$ be the set composed of all numbers x for which $0 \leq x$ together with the symbol ∞ . Consequently:

$$\bar{\mathbf{R}}_0^+ \equiv \mathbf{R}_0^+ \cup \{\infty\}$$

We supply $\bar{\mathbf{R}}_0^+$ with the operations of addition and multiplication, as usual, but we augment the operations by the following conventions:

$$\begin{aligned} x + \infty &= \infty + x = \infty, \ 0 < x \longrightarrow x \times \infty = \infty \times x = \infty \\ \infty + \infty &= \infty, \ \infty \times \infty = \infty, \ 0 \times \infty = \infty \times 0 = 0 \end{aligned}$$

We supply \mathbf{R}_0^+ with the relation of order, as usual, but we augment the relation by the following convention:

$$x < \infty$$

Let H be the bijective mapping carrying $\bar{\mathbf{R}}_0^+$ to [0, 1], defined as follows:

$$H(\xi) = \frac{\xi}{1+\xi}$$

We intend that $H(\infty) = 1$. We supply $\bar{\mathbf{R}}_0^+$ with a metric as follows:

$$\delta(\xi_1,\xi_2) \equiv |H(\xi_1) - H(\xi_2)|$$

Note that, for the metric just described, $\bar{\mathbf{R}}_0^+$ is compact. Let:

 $\sigma: \quad \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_j \leq \cdots$

be an increasing sequence in $\bar{\mathbf{R}}_0^+$. Note that σ is convergent.

Let X be a set. Let \mathcal{A} be a family of subsets of X. We say that \mathcal{A} is *borel algebra* iff:

- (1) $\emptyset \in \mathcal{A}$
- (2) for each subset A of X, if $A \in \mathcal{A}$ then $X \setminus A \in \mathcal{A}$
- (3) for any countable family \mathcal{C} of subsets of X, if $\mathcal{C} \subseteq \mathcal{A}$ then $\cup \mathcal{C} \in \mathcal{A}$

We refer to the set X, supplied with a borel algebra \mathcal{A} of subsets of X, as a *borel space*. We refer to the sets in \mathcal{A} as *borel subsets* of X.

Let X be a set. Let \mathcal{G} be a family of subsets of X. Let **A** be the collection of all borel algebras of subsets of X which include \mathcal{G} . Note that $\mathbf{A} \neq \emptyset$, because the family \mathcal{X} consisting of all subsets of X is contained in **A**. Let:

$$\mathcal{A} = \bigcap \mathbf{A}$$

Obviously, \mathcal{A} is a borel algebra of subsets of X. Moreover, for any borel algebra \mathcal{B} of subsets of X, if $\mathcal{G} \subseteq \mathcal{B}$ then $\mathcal{A} \subseteq \mathcal{B}$. We say that \mathcal{A} is the *smallest* among all borel algebras of subsets of X which include \mathcal{G} . We say that \mathcal{G} generates \mathcal{A} .

Let X be a metric space, with metric d. Let \mathcal{T} be the family of all open subsets of X. We refer to \mathcal{T} as the *topology* on X. Let \mathcal{A} be the borel algebra of subsets of X generated by the topology \mathcal{T} . We regard \mathcal{A} as the *standard* borel algebra of subsets of X, defined relative to the metric d on X. Given a metric space X, we supply X with the standard borel algebra \mathcal{A} , without comment.

Let X_1 and X_2 be borel spaces, supplied with borel algebras \mathcal{A}_1 and \mathcal{A}_2 , respectively. Let F be a mapping carrying X_1 to X_2 . We say that F is a *borel* mapping iff, for each borel subset B of X_2 , $F^{-1}(B)$ is a borel subset of X_1 .

01[•] Let X_1 be a borel space, with borel algebra \mathcal{A}_1 , and let X_2 be a metric space, with metric d_2 . Let F be a mapping carrying X_1 to X_2 . Assume that, for each open subset V of X_2 , $F^{-1}(V)$ is a borel subset of X_1 . [The assumption would be true if X_1 were a metric space, with metric d_1 , and if F were continuous. Why?] Show that F is a borel mapping.

[HINT. Introduce the family \mathcal{B} consisting of all subsets B of X_2 such that $F^{-1}(B)$ lies in \mathcal{A}_1 . Show that \mathcal{B} is a borel algebra of subsets of X_2 . By hypothesis, the topology on X_2 is a subfamily of \mathcal{B} . Draw the conclusion.]

02• Let X be a borel space, with borel algebra \mathcal{A} . Let:

$$f_1, f_2, \ldots, f_j, \ldots$$

be a sequence of functions defined on X with values in **R**. Let the sequence be pointwise convergent and let g be the corresponding pointwise limit:

$$g(x) = \lim_{j \to \infty} f_j(x)$$

where x is any member of X. Assume that, for each index j, f_j is borel. Show that g is borel.

[HINT. Of course, we assume that **R** is supplied with the standard borel algebra. Verify that, for each rational number r and for each x in X, r < g(x) iff there is some rational number s such that r < s and such that the sequence:

$$f_1(x), f_2(x), \ldots, f_j(x), \ldots$$

is eventually in (s, \longrightarrow) . That is:

$$g^{-1}((r, \longrightarrow)) = \bigcup_{r < s} \bigcup_{k=1}^{\infty} \bigcap_{\ell=k}^{\infty} f_{\ell}^{-1}((s, \longrightarrow))$$

Draw the conclusion.]