MATHEMATICS 321

ASSIGNMENT 5

Due: October 7, 2015
01^{\bullet} Let P_{1}, P_{2}, and P_{3} be three distinct points in \mathbf{R}^{2}. Let F_{1}, F_{2}, and F_{3} be the mappings carrying \mathbf{R}^{2} to itself, defined as follows:

$$
F_{1}(X)=\frac{1}{2}\left(X+P_{1}\right), \quad F_{2}(X)=\frac{1}{2}\left(X+P_{2}\right), \quad F_{3}(X)=\frac{1}{2}\left(X+P_{3}\right)
$$

where X is any point in \mathbf{R}^{2}. Note that F_{1}, F_{2}, and F_{3} are contraction mappings, with contraction constants having the common value $1 / 2$. Let \mathcal{F} be the mapping carrying $\mathcal{H}\left(\mathbf{R}^{2}\right)$ to itself, defined as follows:

$$
\mathcal{F}(L)=F_{1}(L) \cup F_{2}(L) \cup F_{3}(L)
$$

where L is any member of $\mathcal{H}\left(\mathbf{R}^{2}\right.$. Show that \mathcal{F} is a contraction mapping. What is the contraction constant for \mathcal{F} ? Let T be the (closed) triangular area defined by P_{1}, P_{2} and P_{3}. Draw a picture of the set:

$$
K=\mathcal{F}^{3}(T)
$$

in $\mathcal{H}\left(\mathbf{R}^{2}\right)$.
02^{\bullet} Let \mathbf{R} be the set of all real numbers, supplied with the usual metric. Let f be a continuous complex valued function defined on \mathbf{R}. We say that f has compact support iff there is a compact subset K of \mathbf{R} such that, for each number x in $\mathbf{R} \backslash K, f(x)=0$. Of course, such a function must be bounded. Let \mathbf{X} be the set of all continuous complex valued functions defined on \mathbf{R}, having compact support. Let d be the uniform metric on \mathbf{X} :

$$
d\left(f_{1}, f_{2}\right)=\sup _{x \in \mathbf{R}}\left|f_{1}(x)-f_{2}(x)\right| \quad\left(f_{1}, f_{2} \in \mathbf{X}\right)
$$

Let Q be the mapping carrying \mathbf{X} to itself, defined as follows:

$$
Q(f)(x)=x f(x) \quad(f \in \mathbf{X}, x \in \mathbf{R})
$$

Show that Q is continuous on \mathbf{X} or show that it is not so.
03^{\bullet} Let X be a metric space. We say that X satisfies Condition C^{\bullet} iff, for any decreasing sequence:

$$
\cdots \subseteq C_{j} \subseteq \cdots \subseteq C_{3} \subseteq C_{2} \subseteq C_{1}
$$

of nonempty closed subsets of X, the intersection:

$$
\bigcap_{j=1}^{\infty} C_{j}
$$

is nonempty. Show that if X satisfies Condition C^{\bullet} then X is compact.

