## MATHEMATICS 321

ASSIGNMENT 4
Due: September 30, 2015
$01^{\bullet}$ Let $A, B$, and $C$ be nonempty subsets of $\mathbf{R}^{+}$for which:

$$
A+B \subseteq C
$$

Of course, the foregoing relation means that, for each $u$ and $v$ in $\mathbf{R}^{+}$, if $u \in A$ and $v \in B$ then $u+v \in C$. Prove that:

$$
\inf C \leq \inf A+\inf B
$$

$02^{\bullet}$ Let $X_{1}$ and $X_{2}$ be metric spaces and let $F$ and $G$ be continuous mappings carrying $X_{1}$ to $X_{2}$. Let $Y$ be the subset of $X_{1}$ consisting of all $x$ in $X_{1}$ such that $F(x)=G(x)$. Prove that $Y$ is closed.
$03^{\bullet}$ Let $X$ be a metric space. Show that if $X$ is totally bounded then $X$ is separable.
$04^{\bullet}$ Let $I \equiv[0,1]$ be the closed unit interval in $\mathbf{R}$. Let $\mathbf{X}$ be the set of all continuous complex valued functions defined on $I$. Of course, $\mathbf{X}$ is a linear space. Let $\mathbf{X}$ be supplied with the Inner Product:

$$
\langle f, g\rangle \equiv \int_{I} f(t) \overline{g(t)} d t \quad(f, g \in \mathbf{X})
$$

the Integral Norm:

$$
\langle h\rangle=\sqrt{\langle h, h\rangle}=\sqrt{\int_{I}|h(t)|^{2} d t} \quad(h \in \mathbf{X})
$$

and the Integral Metric:

$$
\mathbf{d}(f, g) \equiv\left\langle\langle f-g\rangle=\sqrt{\int_{I}|f(t)-g(t)|^{2} d t} \quad(f, g \in \mathbf{X})\right.
$$

Show that $\mathbf{X}$ is not complete.
$05^{\bullet}$ Let $\mathbf{S}^{2}$ be the unit sphere in $\mathbf{R}^{3}$. Let $\mathbf{E}$ be the subset of $\mathbf{S}^{2} \times \mathbf{S}^{2} \times \mathbf{S}^{2}$ consisting of all ordered triples $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ such that $\sigma_{1} \neq \sigma_{2}, \sigma_{1} \neq \sigma_{3}$, and $\sigma_{2} \neq \sigma_{3}$. Let $F$ be the real valued function defined on $\mathbf{E}$ as follows:

$$
F\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=\frac{1}{\left\|\sigma_{1}-\sigma_{2}\right\|}+\frac{1}{\left\|\sigma_{1}-\sigma_{3}\right\|}+\frac{1}{\left\|\sigma_{2}-\sigma_{3}\right\|}
$$

where $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \in \mathbf{E}$. Describe the range of $F$. Of course, you should prove that your description is correct.

