MATHEMATICS 321

ASSIGNMENT 3

Due: September 23, 2015
01^{\bullet} Let $I \equiv[0,1]$ be the closed unit interval in \mathbf{R}. Let F be a continuous mapping carrying I to itself. Show that there must be at least one number x in I such that $F(x)=x$.
02^{\bullet} Let X_{1} and X_{2} be metric spaces and let F be a mapping carrying X_{1} to X_{2}. Let Γ be the graph of F, that is, let Γ be the subset of $X_{1} \times X_{2}$ defined as follows:

$$
\Gamma=\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}: x_{2}=F\left(x_{1}\right)\right\}
$$

Show that if F is continuous then X_{1} and Γ are homeomorphic.
03• Let X be a metric space, with metric d. One says that X is connected iff, for any subsets U and V of X, if U and V are open, if $U \cap V=\emptyset$, and if $U \cup V=X$ then $U=\emptyset$ or $V=\emptyset$. For instance, \mathbf{R}^{2} (with the conventional metric) is connected. See the fourth problem in the first assignment. Again, let X be a metric space, with metric d. Let Y be a subset of X. Of course, both Y and $c l o(Y)$ are themselves metric spaces, as one may restrict d to $Y \times Y$ and $\operatorname{clo}(Y) \times \operatorname{clo}(Y)$, respectively. Prove that if Y is connected then $\operatorname{clo}(Y)$ is connected. Show by example that $\operatorname{clo}(Y)$ may be connected while Y is not.
04^{\bullet} Let C be a circle in the Euclidean plane for which the radius is 1 . Let P_{1} be an equilateral triangle in the plane circumscribed about C and let C_{1} be the circle in the plane circumscribed about P_{1}. Let P_{2} be a square in the plane circumscribed about C_{1} and let C_{2} be the circle in the plane circumscribed about P_{2}. Let P_{3} be a regular pentagon in the plane circumscribed about C_{2} and let C_{3} be the circle in the plane circumscribed about P_{3}. In general, for each positive integer j, let P_{j+1} be a regular $(j+2)$-gon in the plane circumscribed about C_{j} and let C_{j+1} be the circle in the plane circumscribed about P_{j+1}. Let X be the subset of \mathbf{R} composed of the radii of the various circles. Find the supremum of X. See the figure.

