MATHEMATICS 321 ASSIGNMENT 3 Due: September 23, 2015

01[•] Let $I \equiv [0, 1]$ be the closed unit interval in **R**. Let F be a continuous mapping carrying I to itself. Show that there must be at least one number x in I such that F(x) = x.

02• Let X_1 and X_2 be metric spaces and let F be a mapping carrying X_1 to X_2 . Let Γ be the graph of F, that is, let Γ be the subset of $X_1 \times X_2$ defined as follows:

$$\Gamma = \{ (x_1, x_2) \in X_1 \times X_2 : x_2 = F(x_1) \}$$

Show that if F is continuous then X_1 and Γ are homeomorphic.

03• Let X be a metric space, with metric d. One says that X is connected iff, for any subsets U and V of X, if U and V are open, if $U \cap V = \emptyset$, and if $U \cup V = X$ then $U = \emptyset$ or $V = \emptyset$. For instance, \mathbb{R}^2 (with the conventional metric) is connected. See the fourth problem in the first assignment. Again, let X be a metric space, with metric d. Let Y be a subset of X. Of course, both Y and clo(Y) are themselves metric spaces, as one may restrict d to $Y \times Y$ and $clo(Y) \times clo(Y)$, respectively. Prove that if Y is connected then clo(Y) is connected. Show by example that clo(Y) may be connected while Y is not.

04• Let C be a circle in the Euclidean plane for which the radius is 1. Let P_1 be an equilateral triangle in the plane circumscribed about C and let C_1 be the circle in the plane circumscribed about P_1 . Let P_2 be a square in the plane circumscribed about C_1 and let C_2 be the circle in the plane circumscribed about P_2 . Let P_3 be a regular pentagon in the plane circumscribed about C_2 and let C_3 be the circle in the plane circumscribed about C_2 and let C_3 be the circle in the plane circumscribed about P_3 . In general, for each positive integer j, let P_{j+1} be a regular (j + 2)-gon in the plane circumscribed about C_j and let C_{j+1} be the circle in the plane circumscribed about circles. Find the supremum of X. See the figure.

