MATHEMATICS 321 ASSIGNMENT 1 Due: September 9, 2015

01[•] Let X be a metric space, with metric d. Let U and V be subsets of X. Show that if U and V are open then $U \cap V$ is open. To that end, argue from first principles. That is, show that if int(U) = U and int(V) = V then $int(U \cap V) = U \cap V$.

02[•] For the 5-adic metric space **Z**, show that $N_{0.01}(0)$ consists of all k in **Z** for which |k| is divisible by 5³.

03• Let $\bar{\mathbf{M}}_r(\mathbf{R})$ be the uniform metric space on \mathbf{R} , consisting of all bounded real valued functions defined on \mathbf{R} . Let $\bar{\mathbf{M}}_r^+(\mathbf{R})$ be the subset of $\bar{\mathbf{M}}_r(\mathbf{R})$ consisting of all functions f in $\bar{\mathbf{M}}_r(\mathbf{R})$ such that, for each t in \mathbf{R} , 0 < f(t). Show that $\bar{\mathbf{M}}_r^+(\mathbf{R})$ is neither open nor closed in $\bar{\mathbf{M}}_r(\mathbf{R})$.

04• Let U and V be open subsets of \mathbf{R}^2 for which:

$$U \cap V = \emptyset$$
 and $\mathbf{R}^2 = U \cup V$

Show that either $U = \emptyset$ or $V = \emptyset$.

05• Let ρ be a number in the circle group **T**. One says that ρ is a root of unity iff there is some integer k such that $\rho^k = 1$. Let σ be a number in **T** which is not (!) a root of unity. Let A be the subset of **C** consisting of all numbers of the form:

$$r\sigma^k$$
 $(0 \le r \le 1, k \in \mathbf{Z})$

where r runs through the closed unit interval [0,1] in **R** and where k runs through **Z**. Describe the closure of A. Of course, we intend that **C** be regarded as a metric space, in the usual sense.