MATHEMATICS 311

EXAMINATION

Due: Wednesday, May 13, 2015, NOON, Library 306

01• Let f be the complex valued function defined as follows:

$$
f(z)=\tan \left(\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right)\right)
$$

Describe the "natural" domain Ω for f. Show that:

$$
f(z)=z \quad(z \in \Omega)
$$

02• Evaluate the integral:

$$
\int_{0}^{2 \pi} \frac{1}{a+b \sin \theta} d \theta
$$

where $a \in \mathbf{R}, b \in \mathbf{R}$, and $0<|b|<a$.
03^{\bullet} Evaluate the contour integrals:

$$
\int_{\Gamma} \frac{z \exp (z)}{z+2 i} d z, \quad \int_{\Delta} \frac{z \exp (z)}{z+2 i} d z
$$

where:

$$
\Gamma(t)=\exp (i t), \quad \Delta(t)=3 \exp (i t), \quad 0 \leq t \leq 2 \pi
$$

04^{\bullet} Let f be the complex valued function defined as follows:

$$
f(z)=\frac{1}{(z-2) z(z+1)}
$$

where $1<|z|<2$. Find the Laurent Expansion for f in the annulus on which it is defined.
05^{\bullet} Let f be a complex valued function defined and analytic on the entire complex plane \mathbf{C}. For each positive real number r, let:

$$
M(r)=\max _{|z|=r}|f(z)|
$$

Show that, for any positive real numbers r^{\prime} and $r^{\prime \prime}$:

$$
r^{\prime}<r^{\prime \prime} \Longrightarrow M\left(r^{\prime}\right)<M\left(r^{\prime \prime}\right)
$$

06 Determine the number of complex numbers ζ for which $1<|\zeta|<2$ and:

$$
\zeta^{4}-6 \zeta+3=0
$$

07^{\bullet} Let Ω be the region in \mathbf{C} defined as follows:

$$
z \in \Omega \Longleftrightarrow[(0<x) \text { and }(x \leq 1 \Longrightarrow y \neq 0)] \quad(z=x+i y)
$$

Let f be the complex valued function defined on Ω as follows:

$$
f(z)=i \sqrt{z^{2}-1} \quad(z \in \Omega)
$$

Confirm that f is analytic. Describe the range of f. Let u and v be the real and imaginary parts of f :

$$
f(z)=w=u(x, y)+i v(x, y)
$$

Sketch the level sets for u and v :

$$
u(x, y)=a, \quad v(x, y)=b
$$

08^{\bullet} Let Ω be a region in \mathbf{C} of the following form:

$$
\Omega=\Omega^{+} \cup J \cup \Omega^{-}
$$

where Ω^{+}is a region in \mathbf{C} such that:

$$
\left.z \in \Omega^{+} \Longrightarrow 0<y \quad \text { (where } z=x+i y\right)
$$

where Ω^{-}is the region in \mathbf{C} conjugate to Ω^{+}:

$$
z \in \Omega^{-} \Longleftrightarrow \bar{z} \in \Omega^{+}
$$

and where J be an open interval in \mathbf{R}. (Review the definition of a region.) Let f be a complex valued function defined and analytic on Ω^{+}such that, for each (real) number u in J :

$$
\lim _{z \rightarrow u} f(z)=0
$$

Show that, for each (complex) number z in $\Omega^{+}, f(z)=0$. To that end, introduce the complex valued function ϕ, defined on Ω as follows:

$$
z \in \Omega \Longrightarrow \phi(z)= \begin{cases}f(z) & \text { if } z \in \Omega^{+} \\ \frac{0}{f(\bar{z})} & \text { if } z \in J \\ \text { if } z \in \Omega^{-}\end{cases}
$$

Show that ϕ is analytic. Finish the argument.
09^{\bullet} Find all solutions of the following equation:

$$
f^{\prime \prime}(z)+z f(z)=0
$$

To that end, consider functions defined by power series.

