MATHEMATICS 311

ASSIGNMENT 8
Due: April 8, 2015
01° Let Ω be a region in \mathbf{C}. Let g be a function defined and analytic on Ω. Let:

$$
f_{1}, f_{2}, f_{3}, \ldots, f_{j}, \ldots
$$

be a sequence of functions defined and analytic on Ω, which converges uniformly to g on compact subsets of Ω. We mean to say that:

$$
\begin{aligned}
&(\forall K \subseteq \Omega)\left(\forall \epsilon \in \mathbf{R}^{+}\right)\left(\exists n \in \mathbf{Z}^{+}\right)\left(\forall j \in \mathbf{Z}^{+}\right) \\
& {\left[n \leq j \Longrightarrow(\forall z \in \Omega)\left[\left|f_{j}(z)-g(z)\right| \leq \epsilon\right]\right] }
\end{aligned}
$$

That is, for each compact subset K of Ω and for any positive real number ϵ, there is some positive integer n such that, for any positive integer j, if $n \leq j$ then, for any member z of K :

$$
\left|f_{j}(z)-g(z)\right| \leq \epsilon
$$

Assume that, for each positive integer j, f_{j} is injective. We inquire whether or not g must be injective as well. Show by example that, in fact, g might be constant. Assume in turn that g is not constant. Prove that g must be injective.
02° Let $z=x+i y$ be a complex number for which $0<x<1$. Show that:

$$
\int_{0}^{\infty} \frac{t^{-z}}{1+t} d t=\frac{\pi}{\sin (\pi z)}
$$

In the lectures, we will describe a contour integral by which the calculation can be made. The result will figure in our discussion of the Gamma Function.
03° Let Ω be the region in \mathbf{C} defined by the conditions:

$$
z=x+i y \in \Omega \quad \text { iff } \quad 0<y, 1<|z|
$$

Let F be the analytic mapping carrying Ω to \mathbf{C}, defined as follows:

$$
u+i v=w=F(z)=\frac{1}{z}+z
$$

Describe $F(\Omega)$. Sketch the curves:

$$
u(x, y)=c, \quad v(x, y)=d
$$

where c and d are various real numbers. Why do the curves appear to cross at right angles?
04° Let $\boldsymbol{\Delta}$ be the open unit disk in \mathbf{C} centered at 0 . Let f be the function defined on $\boldsymbol{\Delta}$ as follows:

$$
f(z)=\frac{z}{(1-z)^{2}} \quad(z \in \boldsymbol{\Delta})
$$

Show that f is injective. Describe $f(\boldsymbol{\Delta})$.
05^{\bullet} For any mapping F carrying the right half-plane \mathbf{E} to itself, let F^{*} be the mapping defined in terms of F as follows:

$$
F^{*}(z)=z+\frac{1}{F(z)} \quad(z \in \mathbf{E})
$$

Show that F^{*} also carries \mathbf{E} to itself. Now let G be the mapping (carrying \mathbf{E} to itself) defined as follows:

$$
G(z)=z \quad(z \in \mathbf{E})
$$

Form the sequence of mappings:

$$
G, G^{*}, G^{* *}, G^{* * *}, G^{* * * *}, \ldots
$$

Show that the sequence converges uniformly on compact subsets of \mathbf{E}. What is the limit function? We will return to this problem, repeatedly, until we solve it.

