MATHEMATICS 311 ASSIGNMENT 7 Due: March 18, 2015

01° Let Δ be the open disk in **C** centered at 0 with radius 1. Let **D** be the closure of Δ . Let f be a complex-valued function defined on **D**, continuous on **D**, and analytic on Δ . Assume that there is a positive real number ϵ such that:

$$0 \le \theta \le \epsilon \Longrightarrow f(e^{i\theta}) = 0$$

Show that f must be constantly 0 on **D**.

 02° Let *n* be an integer for which 2 < n and let *f* be the polynomial defined as follows:

$$f(z) = z^n - \frac{1}{4}(1 + z + z^2)$$
 $(z \in \mathbf{C})$

Show that the zeros of f lie in the unit disk Δ .

 $03^\circ~$ For any complex numbers ζ_1 and $\zeta_2,$ let us write:

$$\zeta_1 \bullet \zeta_2 = \Re(\zeta_1 \overline{\zeta_2}) = \Re(\zeta_1) \Re(\zeta_2) + \Im(\zeta_1) \Im(\zeta_2)$$

For each z in the unit disk Δ and for any complex numbers ζ_1 and ζ_2 , let us write:

$$\langle\!\!\langle \zeta_1, \zeta_2 \rangle\!\!\rangle_z = (\frac{2}{1-|z|^2})^2 \zeta_1 \bullet \zeta_2$$

Now let *H* be an automorphism of Δ :

$$H(z) = \frac{\alpha z + \beta}{\bar{\beta}z + \bar{\alpha}} \qquad (z \in \mathbf{\Delta})$$

where $|\alpha|^2 - |\beta|^2 = 1$. Let z be any member of Δ and let ζ_1 and ζ_2 be any complex numbers. Let:

$$w = H(z), \ \eta_1 = H'(z)\zeta_1, \ \eta_2 = H'(z)\zeta_2$$

Show that:

$$\langle\!\langle \eta_1, \eta_2 \rangle\!\rangle_w = \langle\!\langle \zeta_1, \zeta_2 \rangle\!\rangle_z$$

If you like, you may restrict your attention to the case in which:

$$\alpha = \cosh(\theta), \ \beta = \sinh(\theta)$$

where θ is any real number.] Conclude that *H* is an *isometry* for the *metric* structure $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on Δ .