MATHEMATICS 311

ASSIGNMENT 7

Due: March 18, 2015
01° Let $\boldsymbol{\Delta}$ be the open disk in \mathbf{C} centered at 0 with radius 1 . Let \mathbf{D} be the closure of $\boldsymbol{\Delta}$. Let f be a complex-valued function defined on \mathbf{D}, continuous on \mathbf{D}, and analytic on $\boldsymbol{\Delta}$. Assume that there is a positive real number ϵ such that:

$$
0 \leq \theta \leq \epsilon \Longrightarrow f\left(e^{i \theta}\right)=0
$$

Show that f must be constantly 0 on \mathbf{D}.
02° Let n be an integer for which $2<n$ and let f be the polynomial defined as follows:

$$
f(z)=z^{n}-\frac{1}{4}\left(1+z+z^{2}\right) \quad(z \in \mathbf{C})
$$

Show that the zeros of f lie in the unit disk $\boldsymbol{\Delta}$.
03° For any complex numbers ζ_{1} and ζ_{2}, let us write:

$$
\zeta_{1} \bullet \zeta_{2}=\Re\left(\zeta_{1} \bar{\zeta}_{2}\right)=\Re\left(\zeta_{1}\right) \Re\left(\zeta_{2}\right)+\Im\left(\zeta_{1}\right) \Im\left(\zeta_{2}\right)
$$

For each z in the unit disk $\boldsymbol{\Delta}$ and for any complex numbers ζ_{1} and ζ_{2}, let us write:

$$
\left\langle\zeta_{1}, \zeta_{2}\right\rangle_{z}=\left(\frac{2}{1-|z|^{2}}\right)^{2} \zeta_{1} \bullet \zeta_{2}
$$

Now let H be an automorphism of $\boldsymbol{\Delta}$:

$$
H(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}} \quad(z \in \boldsymbol{\Delta})
$$

where $|\alpha|^{2}-|\beta|^{2}=1$. Let z be any member of $\boldsymbol{\Delta}$ and let ζ_{1} and ζ_{2} be any complex numbers. Let:

$$
w=H(z), \eta_{1}=H^{\prime}(z) \zeta_{1}, \eta_{2}=H^{\prime}(z) \zeta_{2}
$$

Show that:

$$
\left\langle\eta_{1}, \eta_{2}\right\rangle_{w}=\left\langle\left\langle\zeta_{1}, \zeta_{2}\right\rangle_{z}\right.
$$

[If you like, you may restrict your attention to the case in which:

$$
\alpha=\cosh (\theta), \beta=\sinh (\theta)
$$

where θ is any real number.] Conclude that H is an isometry for the metric structure $\langle\cdot, \cdot\rangle$ on $\boldsymbol{\Delta}$.

