MATHEMATICS 311

ASSIGNMENT 6

Due: March 11, 2015
01° Calculate:

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{\exp (x)+\exp (-x)} d x
$$

02° Let a and b be real numbers for which $0<b<a$. Calculate:

$$
\int_{0}^{\pi} \frac{1}{(a+b \cos (\theta))^{2}} d \theta
$$

03° Find the Laurent Expansion:

$$
\frac{1}{(z-1)(z-2)}=\sum_{k=-\infty}^{\infty} c_{k} z^{k} \quad(2<|z|)
$$

04° For the polynomial:

$$
p(z)=z^{9}-8 z^{2}+5
$$

show that all the zeros lie in the annular region: $\frac{1}{2}<|z|<\frac{3}{2}$, and that two of them lie in the annular region: $\frac{1}{2}<|z|<1$.
05° Let $\boldsymbol{\Delta}$ be the unit disk in \mathbf{C} centered at 0 . Let K be a compact subset of $\boldsymbol{\Delta}$. Let f be a function defined and analytic on $\boldsymbol{\Delta}$ for which $f(\boldsymbol{\Delta}) \subseteq K$. Prove that f admits precisely one fixed point.
06^{\bullet} Let $\boldsymbol{\Delta}$ be the unit disk in \mathbf{C} centered at 0 . Let f be the function defined on $\boldsymbol{\Delta}$ as follows:

$$
f(z)=\frac{z}{(1-z)^{2}} \quad(z \in \boldsymbol{\Delta})
$$

Show that f is injective. Describe $f(\boldsymbol{\Delta})$.

