MATHEMATICS 311 ASSIGNMENT 6 Due: March 11, 2015

 01° Calculate:

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{\exp(x) + \exp(-x)} dx$$

 02° Let a and b be real numbers for which 0 < b < a. Calculate:

$$\int_0^\pi \frac{1}{(a+b\cos(\theta))^2} d\theta$$

 03° Find the Laurent Expansion:

$$\frac{1}{(z-1)(z-2)} = \sum_{k=-\infty}^{\infty} c_k z^k \qquad (2 < |z|)$$

 04° For the polynomial:

$$p(z) = z^9 - 8z^2 + 5$$

show that all the zeros lie in the annular region: $\frac{1}{2} < |z| < \frac{3}{2}$, and that two of them lie in the annular region: $\frac{1}{2} < |z| < 1$.

 05° Let Δ be the unit disk in \mathbb{C} centered at 0. Let K be a compact subset of Δ . Let f be a function defined and analytic on Δ for which $f(\Delta) \subseteq K$. Prove that f admits precisely one fixed point.

06• Let Δ be the unit disk in **C** centered at 0. Let f be the function defined on Δ as follows:

$$f(z) = \frac{z}{(1-z)^2} \qquad (z \in \mathbf{\Delta})$$

Show that f is injective. Describe $f(\Delta)$.