MATHEMATICS 311

ASSIGNMENT 5

Due: March 4, 2015

Let Ω be a region in \mathbf{C}, let S be a finite subset of Ω, let f be a function defined and analytic on $\Omega \backslash S$, and let Γ be a closed chain in $\Omega \backslash S$ such that Γ is homologous to 0 in Ω. The Residue Theorem states that:

$$
\frac{1}{2 \pi i} \int_{\Gamma} f(z) d z=\sum_{w \in S} W(\Gamma, w) \operatorname{Res}(f, w)
$$

By $W(\Gamma, w)$, we mean the winding number of Γ relative to w. By $\operatorname{Res}(f, w)$, we mean the residue of f at w.
01° Let γ be the (simple closed) path in \mathbf{C} which traces ccw the circle centered at 0 with radius 2. Calculate:

$$
\int_{\gamma} \frac{1}{z^{2}-1} d z
$$

02° Let γ be the (simple closed) path in \mathbf{C} which traces ccw the circle in centered at 0 with radius 7 . Calculate:

$$
\int_{\gamma} \frac{1+z}{1-\cos (z)} d z
$$

03° Let γ be any simple closed path in $\mathbf{C} \backslash\{0\}$. Calculate:

$$
\int_{\gamma} \frac{\exp \left(-z^{2}\right)}{z^{2}} d z
$$

04° Calculate:

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x
$$

05° Calculate:

$$
\int_{0}^{2 \pi} \exp (\exp (i t)) d t
$$

06° By a polynomial in the real variables x and y, we mean a complex valued function of the following form:

$$
s(x, y)=\sum_{\ell=0}^{n}\left[\sum_{0 \leq j, 0 \leq k, j+k=\ell} c_{j k} x^{j} y^{k}\right]
$$

where the various coefficients $c_{j k}$ are complex numbers. We presume that the degree of s is n, which is to say that there is at least one coefficient $c_{j k}$ for which $j+k=n$ and $c_{j k} \neq 0$. By a rational function in the real variables x and y, we mean a ratio of two polynomials, let them be p and q, in x and y :

$$
r(x, y)=\frac{p(x, y)}{q(x, y)}
$$

For such a function, we may define a corresponding complex valued function of a complex variable z :

$$
f(z)=\frac{g(z)}{i z h(z)}
$$

where:

$$
\begin{aligned}
& g(z)=p((1 / 2)(z+(1 / z)),(1 / 2 i)(z-(1 / z))) \\
& h(z)=q((1 / 2)(z+(1 / z)),(1 / 2 i)(z-(1 / z)))
\end{aligned}
$$

Verify that f is meromorphic on \mathbf{C}. Let P be the set of poles of f in \mathbf{C}. In turn, let Δ be the open unit disk in \mathbf{C} centered at 0 :

$$
z \in \Delta \Longleftrightarrow|z|<1
$$

and let Γ be the boundary of Δ, that is, the unit circle in \mathbf{C} centered at 0 with radius 1 :

$$
w \in \Gamma \Longleftrightarrow|w|=1
$$

Now assume that, for any real numbers u and v, if $u^{2}+v^{2}=1$ then $q(u, v) \neq 0$. As a consequence, verify that, for each w in Γ, f is analytic at w. Finally, let $S=P \cap \Delta$. Verify that S is finite. Now apply the Residue Theorem to show that:

$$
\frac{1}{2 \pi i} \int_{0}^{2 \pi} r(\cos \theta, \sin \theta) d \theta=\sum_{w \in S} \operatorname{Res}(f, w)
$$

Start by noting that:

$$
r(\cos \theta, \sin \theta)=i e^{i \theta} f\left(e^{i \theta}\right)
$$

Then compute:

$$
\frac{1}{2 \pi i} \int_{\Gamma} f(z) d z
$$

07° Let a be a real number for which $0<a$ but $a \neq 1$. Show that:

$$
\int_{0}^{2 \pi} \frac{1}{1+a^{2}-2 a \cos \theta} d \theta= \begin{cases}2 \pi /\left(1-a^{2}\right) & \text { if } a<1 \\ 2 \pi /\left(a^{2}-1\right) & \text { if } 1<a\end{cases}
$$

08° Let n be a positive integer. Show that:

$$
\int_{-\pi}^{\pi} \cos ^{2 n} \theta d \theta=\frac{2 \pi}{4^{n}}\binom{2 n}{n}
$$

