MATHEMATICS 311 ASSIGNMENT 5 Due: March 4, 2015

Let Ω be a region in **C**, let *S* be a finite subset of Ω , let *f* be a function defined and analytic on $\Omega \setminus S$, and let Γ be a closed chain in $\Omega \setminus S$ such that Γ is homologous to 0 in Ω . The Residue Theorem states that:

$$\frac{1}{2\pi i}\int_{\Gamma}f(z)dz = \sum_{w\in S}W(\Gamma,w)Res(f,w)$$

By $W(\Gamma, w)$, we mean the winding number of Γ relative to w. By Res(f, w), we mean the residue of f at w.

01° Let γ be the (simple closed) path in **C** which traces ccw the circle centered at 0 with radius 2. Calculate:

$$\int_{\gamma} \frac{1}{z^2 - 1} dz$$

 02° Let γ be the (simple closed) path in **C** which traces ccw the circle in centered at 0 with radius 7. Calculate:

$$\int_{\gamma} \frac{1+z}{1-\cos(z)} dz$$

 03° Let γ be any simple closed path in $\mathbb{C} \setminus \{0\}$. Calculate:

$$\int_{\gamma} \frac{exp(-z^2)}{z^2} dz$$

 04° Calculate:

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

 05° Calculate:

$$\int_0^{2\pi} \exp(\exp(it))dt$$

 06° By a polynomial in the real variables x and y, we mean a complex valued function of the following form:

$$s(x,y) = \sum_{\ell=0}^{n} \left[\sum_{0 \le j, 0 \le k, j+k=\ell} c_{jk} x^{j} y^{k} \right]$$

where the various coefficients c_{jk} are complex numbers. We presume that the degree of s is n, which is to say that there is at least one coefficient c_{jk} for which j + k = n and $c_{jk} \neq 0$. By a rational function in the real variables x and y, we mean a ratio of two polynomials, let them be p and q, in x and y:

$$r(x,y) = \frac{p(x,y)}{q(x,y)}$$

For such a function, we may define a corresponding complex valued function of a complex variable z:

$$f(z) = \frac{g(z)}{izh(z)}$$

where:

$$g(z) = p((1/2)(z + (1/z)), (1/2i)(z - (1/z)))$$

$$h(z) = q((1/2)(z + (1/z)), (1/2i)(z - (1/z)))$$

Verify that f is meromorphic on **C**. Let P be the set of poles of f in **C**. In turn, let Δ be the open unit disk in **C** centered at 0:

$$z \in \Delta \iff |z| < 1$$

and let Γ be the boundary of Δ , that is, the unit circle in **C** centered at 0 with radius 1:

$$w \in \Gamma \iff |w| = 1$$

Now assume that, for any real numbers u and v, if $u^2 + v^2 = 1$ then $q(u, v) \neq 0$. As a consequence, verify that, for each w in Γ , f is analytic at w. Finally, let $S = P \cap \Delta$. Verify that S is finite. Now apply the Residue Theorem to show that:

$$\frac{1}{2\pi i} \int_0^{2\pi} r(\cos\theta, \sin\theta) d\theta = \sum_{w \in S} \operatorname{Res}(f, w)$$

Start by noting that:

$$r(\cos\theta, \sin\theta) = ie^{i\theta}f(e^{i\theta})$$

Then compute:

$$\frac{1}{2\pi i}\int_{\Gamma}f(z)dz$$

07° Let a be a real number for which 0 < a but $a \neq 1$. Show that:

$$\int_0^{2\pi} \frac{1}{1+a^2 - 2a\cos\theta} d\theta = \begin{cases} 2\pi/(1-a^2) & \text{if } a < 1\\ 2\pi/(a^2-1) & \text{if } 1 < a \end{cases}$$

 $08^\circ~$ Let n be a positive integer. Show that:

$$\int_{-\pi}^{\pi} \cos^{2n}\theta d\theta = \frac{2\pi}{4^n} \binom{2n}{n}$$