MATHEMATICS 311

ASSIGNMENT 4

Due: February 25, 2015
01° Let Ω be a region in \mathbf{C} and let f be a complex-valued function defined and analytic on Ω :

$$
f(z)=u(x, y)+i v(x, y) \quad(z=x+i y \in \Omega)
$$

Let ρ be the modulus function for f :

$$
\rho(x, y)=|f(z)| \quad(x+i y=z \in \Omega)
$$

Show that, for any $z=x+i y$ in $\Omega,(x, y)$ is a local minimum for ρ iff $f(z)=0$.
02° For each of the following functions, find the isolated singularities. Verify that they are all poles. For each such singularity, find the corresponding residue:

$$
f(z)=\frac{z^{3}}{1-z^{5}}, \quad g(z)=\frac{z^{5}}{\left(1-z^{2}\right)^{2}}, \quad h(z)=\frac{\cos (z)}{1+z+z^{2}}
$$

03° From the relation:

$$
\exp \left(\frac{t}{2}\left(z-\frac{1}{z}\right)\right)=\sum_{n=-\infty}^{\infty} J_{n}(t) z^{n}
$$

show that:

$$
J_{n}(t)=\frac{1}{\pi} \int_{0}^{\pi} \cos (t \sin (\theta)-n \theta) d \theta, \quad J_{-n}(t)=(-1)^{n} J_{n}(t)
$$

Of course, $t \in \mathbf{R}, z \in \mathbf{C}$, and $n \in \mathbf{Z}$. One refers to J_{n} as the Bessel Function of order n.
04° Let Ω be a region in \mathbf{C} and let w be a complex number in Ω. Let f be a complex-valued function defined and analytic on Ω. Let f have a zero of order n at w :

$$
f(w)=0, \quad f^{\prime}(w)=0, \quad \ldots \quad, \quad f^{(n-1)}(w)=0, \quad f^{n}(w) \neq 0
$$

Show that:

$$
\operatorname{res}_{w}\left(\frac{f^{\prime}}{f}\right)=n
$$

