MATHEMATICS 311

ASSIGNMENT 3

Due: February 18, 2015

01• The Bernoulli Numbers are defined by the following relation:

$$
\frac{z}{\exp (z)-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k}
$$

Find $B_{0}, B_{1}, B_{2}, B_{3}$, and B_{4}. Show that for any integer k, if $3 \leq k$ and if k is odd then $B_{k}=0$.

02• The Fibonacci Numbers are defined by the following relation:

$$
\frac{z}{1-z-z^{2}}=\sum_{j=0}^{\infty} F_{j} z^{j}
$$

Find the real numbers a and b for which:

$$
1-z-z^{2}=(1-a z)(1-b z), \quad a<0<b
$$

Show that:

$$
F_{j}=\frac{b^{j}-a^{j}}{\sqrt{5}} \quad(j=0,1,2,3, \ldots)
$$

To that end, first find the real numbers A and B such that:

$$
\frac{z}{1-z-z^{2}}=\frac{A}{1-a z}+\frac{B}{1-b z}
$$

Find the radius of convergence for the power series.
03^{\bullet} Let z be any complex number and let r be any positive real number. Let $C_{r}(z)$ stand for the circle having center z and radius r :

$$
w \in C_{r}(z) \quad \text { iff } \quad|w-z|=r
$$

and let $D_{r}(z)$ stand for the open disk having center z and radius r :

$$
w \in D_{r}(z) \quad \text { iff } \quad|w-z|<r
$$

Let $\gamma_{r}(z)$ be the curve, parametrized by arclength, which traverses $C_{r}(z)$ once ccw:

$$
\gamma_{r}(z)(s)=z+\operatorname{rexp}\left(i \frac{1}{r} s\right), \quad(0 \leq s \leq 2 \pi r)
$$

Let Ω be a region in \mathbf{C} which includes:

$$
\operatorname{clo}\left(D_{r}(z)\right)=D_{r}(z) \cup C_{r}(z)
$$

and let f be a function defined and analytic on Ω. Apply the Cauchy Integral Formula, for circular curves, to show that:

$$
f(z)=\frac{1}{2 \pi r} \int_{0}^{2 \pi r} f\left(z+\operatorname{rexp}\left(i \frac{1}{r} s\right)\right) d s
$$

Hence, $f(z)$ is the average of the values of f on $C_{r}(z)$. Apply polar coordinates to show that:

$$
f(z)=\frac{1}{\pi r^{2}} \iint_{D_{z}(r)} f(x+i y) d x d y
$$

Hence, $f(z)$ is the average of the values of f on $D_{r}(z)$.
04^{\bullet} Let r be a positive real number for which $0<r<1$. Let f be the function defined as follows:

$$
f(z)=\frac{1}{1-r z} \quad\left(|z|<\frac{1}{r}\right)
$$

Obviously, f is analytic. Let C be the circle having center 0 and radius 1 . Let γ be the curve which traverses C once ccw:

$$
\gamma(\theta)=\exp (i \theta), \quad(0 \leq \theta \leq 2 \pi)
$$

Apply the Cauchy Integral Formula, for circular curves, to show that:

$$
\frac{1}{1-r^{2}}=f_{r}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{1-2 r \cos (\theta)+r^{2}} d \theta
$$

