MATHEMATICS 311

ASSIGNMENT 2

Due: February 11, 2015
01° Let Ω be a region in \mathbf{C} and let f be a function defined on Ω with values in C. Let u and v be the real and imaginary parts of f :

$$
f=u+i v
$$

Of course, the values of u and v lie in \mathbf{R}. In what follows, let us assume that the various partial derivatives of u and v exist, as required. Naturally:

$$
\frac{\partial}{\partial x} f=\frac{\partial}{\partial x} u+i \frac{\partial}{\partial x} v, \quad \frac{\partial}{\partial y} f=\frac{\partial}{\partial y} u+i \frac{\partial}{\partial y} v
$$

One defines:

$$
\frac{\partial}{\partial z} f=\frac{1}{2}\left(\frac{\partial}{\partial x} f-i \frac{\partial}{\partial y} f\right), \quad \frac{\partial}{\partial \bar{z}} f=\frac{1}{2}\left(\frac{\partial}{\partial x} f+i \frac{\partial}{\partial y} f\right)
$$

Verify that f is analytic iff:

$$
\frac{\partial}{\partial \bar{z}} f=0
$$

in which case:

$$
f^{\prime}=\frac{\partial}{\partial z} f=\frac{\partial}{\partial x} f
$$

One defines:

$$
\Delta f=\frac{\partial^{2}}{\partial z \partial \bar{z}} f
$$

Verify that:

$$
\triangle f=\frac{1}{4}\left(\frac{\partial^{2}}{\partial x^{2}} f+\frac{\partial^{2}}{\partial y^{2}} f\right) \quad \text { and } \quad \triangle f=\frac{\partial^{2}}{\partial \bar{z} \partial z} f
$$

One says that f is harmonic iff:

$$
\Delta f=0
$$

Show that if f is analytic then f is harmonic. Show that if f is harmonic then:

$$
\frac{\partial}{\partial z} f
$$

is analytic.
02° Let \mathbf{H} be the region in \mathbf{C} consisting of all complex numbers z for which:

$$
0<\operatorname{Im}(z)
$$

One refers to \mathbf{H} as the upper half plane. Let $\boldsymbol{\Delta}$ be the region in \mathbf{C} consisting of all complex numbers z for which:

$$
|z|<1
$$

One refers to $\boldsymbol{\Delta}$ as the unit disk. Let f be the Linear Fractional Transformation defined as follows:

$$
f(z)=\frac{1}{i} \frac{z+i}{z-i}
$$

Verify that $f(-i)=0, f(0)=i, f(i)=\infty, f(-1)=-1$, and $f(1)=1$. Show that f carries $\boldsymbol{\Delta}$ bijectively to \mathbf{H}. Describe the action of f on the boundary of $\boldsymbol{\Delta}$. Describe the inverse of f.
03° Let f be the function defined on \mathbf{C} as follows:

$$
f(z)=\exp \left(-z^{2}\right) \quad(z \in \mathbf{C})
$$

Show that there is a function g defined and analytic on \mathbf{C} such that:

$$
g^{\prime}(z)=f(z) \quad(z \in \mathbf{C})
$$

Conclude that, for any closed path γ in \mathbf{C} :

$$
\int_{\gamma} f(z) d z=0
$$

04° Evaluate the Fresnel Integrals:

$$
\lim _{r \rightarrow \infty} \int_{0}^{r} \cos \left(u^{2}\right) d u, \quad \lim _{r \rightarrow \infty} \int_{0}^{r} \sin \left(u^{2}\right) d u
$$

To do so, introduce the region Ω_{r} in \mathbf{C} consisting of the complex numbers z for which:

$$
|z|<r, \quad 0<\arg (z)<\frac{\pi}{4}
$$

In turn, introduce the simple closed path γ_{r} which traces the boundary of Ω_{r} counterclockwise. Finally, study the relation:

$$
\int_{\gamma_{r}} \exp \left(-z^{2}\right) d z=0
$$

