MATHEMATICS 311

ASSIGNMENT 1

Due: February 4, 2015
01° For each z in \mathbf{C}, let M_{z} be the two by two matrix with real entries, defined as follows:

$$
M_{z}=\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)
$$

where $z=x+i y$. Note that:

$$
M_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad M_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Show that, for any z^{\prime} and $z^{\prime \prime}$ in \mathbf{C} :

$$
M_{z^{\prime}+z^{\prime \prime}}=M_{z^{\prime}}+M_{z^{\prime \prime}}, \quad M_{z^{\prime} z^{\prime \prime}}=M_{z^{\prime}} M_{z^{\prime \prime}}
$$

From the polar form for z :

$$
z=r e^{i \theta}=\operatorname{rexp}(i \theta)=r(\cos (\theta)+i \sin (\theta))
$$

show that:

$$
M_{z}=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Consequently, M_{z} defines a similarity transformation on \mathbf{R}^{2}, specifically, the composition of a rotation and a transformation of scale.
02^{\bullet} Let x be a real number for which:

$$
\sin \left(\frac{1}{2} x\right) \neq 0
$$

Show that:

$$
\left|\sum_{k=0}^{n-1} \exp (i k x)\right|^{2}=\frac{\sin ^{2}\left(\frac{1}{2} n x\right)}{\sin ^{2}\left(\frac{1}{2} x\right)}
$$

03° For the following complex mapping:

$$
w=f(z)=z^{3} \quad(z \in \mathbf{C})
$$

verify the Cauchy/Riemann equations.
04° For the following complex mapping:

$$
w=f(z)=\frac{z-i}{z+i} \quad(z \in \mathbf{C}, z \neq-i)
$$

verify the Cauchy/Riemann equations.
05° For the following complex mapping:

$$
w=f(z)=\frac{1}{z} \quad(z \in \mathbf{C}, z \neq 0)
$$

verify the Cauchy/Riemann equations. Draw a diagram to show the relation between z and w.
06° For the following complex mapping:

$$
w=\exp (z) \quad(z \in \mathbf{C})
$$

verify the Cauchy/Riemann equations. In this context, we intend that:

$$
w=u+i v, \quad z=x+i y
$$

and:

$$
u=e^{x} \cos (y), \quad v=e^{x} \sin (y)
$$

07° For the following complex mapping:

$$
w=\log (z) \quad(z \in \mathbf{C}, 0<|z|, \operatorname{Im}(z)=0 \Longrightarrow 0<\operatorname{Re}(z))
$$

verify the Cauchy/Riemann equations. In this context, we intend that:

$$
w=u+i v, \quad z=x+i y
$$

and:

$$
u=\log (|z|), \quad v=\arg (z)
$$

See article 10^{\bullet} on page 3 of this assignment.
08° Find the real and imaginary parts of the complex number:

$$
(1+i)^{1+i}=\exp ((1+i) \log (1+i))
$$

09° Show that the complex mapping:

$$
f(z)=|z| \quad(z \in \mathbf{C},|z| \neq 0)
$$

is not analytic.
10^{\bullet} Testify that you understand the following derivation of an expression for $\arg (z)$. Let Ω be the principle domain for the logarithm function:

$$
z \in \Omega \Longleftrightarrow(y=0 \rightarrow 0<x)
$$

By definition:

$$
\log (z)=\log (|z|)+i \arg (z) \quad(z \in \Omega)
$$

By studying the following diagram, verify that:

$$
\begin{equation*}
\arg (z)=2 \arctan \left(\frac{y}{x+|z|}\right) \quad(z \in \Omega) \tag{*}
\end{equation*}
$$

where of course:

$$
z=x+i y, \quad \theta=\arg (z)
$$

