MATHEMATICS 212

EXAMINATION
Due: Wednesday, May 13, 2015, NOON, Library 306
01^{\bullet} What is the fifth letter of the Greek alphabet?
02^{\bullet} Let S be the surface in \mathbf{R}^{3} composed of all points (x, y, z) which satisfy the following conditions:

$$
x=r \cos (\phi), \quad y=r \sin (\phi), \quad z=\phi
$$

where:

$$
0 \leq r \leq 1, \quad 0 \leq \phi \leq \pi
$$

Draw a picture of S. Find the surface area of S.
03^{\bullet} Let V be the region in \mathbf{R}^{3} consisting of all points (x, y, z) for which:

$$
0 \leq z \leq 2-x, \quad x^{2}+4 y^{2} \leq 4
$$

Draw a picture of V. Find the volume of V.
04^{\bullet} Let F be the vector field defined on \mathbf{R}^{3} as follows:

$$
F(x, y, z)=\left(x+z^{2}, y+z^{2}, x^{2}+y^{2}\right)
$$

Let c be any positive number. Let S be the surface in \mathbf{R}^{3} consisting of all points (x, y, z) for which:

$$
x^{2}+y^{2}+\frac{z^{2}}{c^{2}}=1, \quad 0 \leq z
$$

Calculate the surface integral of $\nabla \times F$ over S :

$$
\iint_{S} \nabla \times F
$$

05^{\bullet} Let a, b, and c be positive numbers. Let E be the ellipsoid in \mathbf{R}^{3} composed of all points (x, y, z) which satisfy the following condition:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1
$$

Calculate:

$$
\iiint_{E}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)^{1 / 2} d x d y d z
$$

06^{\bullet} Let V be the region in \mathbf{R}^{3} consisting of all points (x, y, z) such that:

$$
0 \leq x, \quad 0 \leq y, \quad 0 \leq z, \quad x^{2}+y^{2} \leq 1, \quad x^{2}+z^{2} \leq 1, \quad y^{2}+z^{2} \leq 1
$$

Show that the volume of V equals:

$$
2 \int_{0}^{\pi / 4} \int_{0}^{1} \sqrt{1-r^{2} \cos ^{2}(\phi)} r d r d \phi
$$

Do not be discouraged if you cannot evaluate the integral.
07^{\bullet} Let C be the circle in \mathbf{R}^{3} composed of all points (x, y, z) which satisfy the following conditions:

$$
x^{2}+y^{2}=1 \quad \text { and } \quad z=0
$$

Let A be the region in \mathbf{R}^{3} complementary to C : $A=\mathbf{R}^{3} \backslash C$. Let λ be the 1 form on A defined as follows:

$$
\lambda=\frac{1}{\left(1-x^{2}-y^{2}\right)^{2}+z^{2}}\left(2 x z d x+2 y z d y+\left(1-x^{2}-y^{2}\right) d z\right)
$$

Show that:

$$
d \lambda=0
$$

Introduce the simple 1 chain H in A, defined as follows:

$$
H(t)=(\sqrt{1+\cos (2 \pi t)}, 0, \sin (2 \pi t))
$$

where $0 \leq t \leq 1$. Draw a picture to show that the circle C and the range of H are "linked." Then compute:

$$
\int_{H} \lambda
$$

Finally, find a 0 form f such that $d f=\lambda$ or show that it cannot be done.
08^{\bullet} Let A be the region in \mathbf{R}^{3} composed of all points (x, y, z) which satisfy the following condition:

$$
z^{2}-x^{2}-y^{2}<1
$$

Let μ be the 2 form on \mathbf{R}^{3} defined as follows:

$$
\mu=\log \left(1+x^{2}+y^{2}-z^{2}\right)[y z d y d z+z x d z d x+2 x y d x d y]
$$

Show that:

$$
d \mu=0
$$

Find all the 1 forms λ on \mathbf{R}^{3} for which:

$$
d \lambda=\mu
$$

09^{\bullet} Let f be the function defined on \mathbf{R}^{3} as follows:

$$
f(x, y, z)=z+\frac{1}{2} r^{2}-\frac{1}{4} r^{4}
$$

where $r^{2}=x^{2}+y^{2}$. Let S be the surface in \mathbf{R}^{3} defined by the conditions:

$$
f(x, y, z)=0, \quad 0 \leq r \leq 2
$$

Draw a picture of S. Find the surface area 2 form for S. Show that the surface area of S equals:

$$
2 \pi \int_{0}^{2} r \sqrt{r^{2}\left(1-r^{2}\right)^{2}+1} d r
$$

