MATHEMATICS 212

ASSIGNMENT 10

Due: April 27, 2015
01° Let μ be the differential 1-form:

$$
\mu=(y+z) d x+(x+z) d y+(x+y) d z
$$

on \mathbf{R}^{3}. Verify that $d \mu=0$. Find all differential 0-forms λ :

$$
\lambda=\lambda(x, y, z)
$$

on \mathbf{R}^{3} such that:

$$
d \lambda=\mu
$$

To that end, introduce the homotopy H carrying $\mathbf{I} \times \mathbf{R}^{3}$ to \mathbf{R}^{3}, defined as follows:

$$
H(t, x, y, z)=(t x, t y, t z) \quad(0 \leq t \leq 1)
$$

Compute:

$$
\lambda=K\left(H^{*}(\mu)\right)
$$

as described in the lectures. Then find all differential 0-forms ω on \mathbf{R}^{3} for which $d \omega=0$. That done, you are finished. Why?
02° Let μ be the differential 2-form:

$$
\mu=3 x y^{2} z d y d z-y^{3} z d z d x+x^{2} y^{2} d x d y
$$

on \mathbf{R}^{3}. Verify that $d \mu=0$. Find all differential 1-forms λ :

$$
\lambda=f(x, y, z) d x+g(x, y, z) d y+h(x, y, z) d z
$$

on \mathbf{R}^{3} such that:

$$
d \lambda=\mu
$$

To that end, introduce the homotopy H carrying $\mathbf{I} \times \mathbf{R}^{3}$ to \mathbf{R}^{3}, defined as follows:

$$
H(t, x, y, z)=(t x, t y, t z) \quad(0 \leq t \leq 1)
$$

Compute:

$$
\lambda=K\left(H^{*}(\mu)\right)
$$

as described in the lectures. Then find all differential 1-forms ω on \mathbf{R}^{3} for which $d \omega=0$. That done, you are finished. Why?
03° Let Ω be the positive octant in \mathbf{R}^{3} :

$$
0<x, 0<y, 0<z
$$

Let μ be the differential 1-form on Ω, defined as follows:

$$
\mu=x \frac{1-\log (r)}{r^{3}} d x+y \frac{1-\log (r)}{r^{3}} d y+z \frac{1-\log (r)}{r^{3}} d z
$$

As usual, $r^{2}=x^{2}+y^{2}+z^{2}$. Verify that $d \mu=0$. Find all differential 0 -forms λ on Ω such that:

$$
d \lambda=\mu
$$

You might want to apply the homotopy H carrying $I \times \Omega$ to Ω, defined as follows:

$$
H(t, x, y, z)=(1-t)(1,1,1)+t(x, y, z) \quad(0 \leq t \leq 1,(x, y, z) \in \Omega)
$$

Compute:

$$
\lambda=K\left(H^{*}(\mu)\right)
$$

as described in the lectures. Then find all differential 0-forms ω on \mathbf{R}^{3} for which $d \omega=0$. That done, you are finished. Why?
04° Let μ be the differential 2-form on \mathbf{R}^{3}, defined as follows:

$$
\mu=(x y-x z) d y d z+(y z-y x) d z d x+(z x-z y) d x d y
$$

Verify that $d \mu=0$. Find all differential 1-forms λ :

$$
\lambda=f(x, y, z) d x+g(x, y, z) d y+h(x, y, z) d z
$$

on \mathbf{R}^{3} such that:

$$
d \lambda=\mu
$$

Naturally, you will want to apply the homotopy H carrying $I \times \mathbf{R}^{3}$ to \mathbf{R}^{3}, defined as follows:

$$
H(t, x, y, z)=(t x, t y, t z) \quad\left(0 \leq t \leq 1,(x, y, z) \in \mathbf{R}^{3}\right)
$$

Compute:

$$
\lambda=K\left(H^{*}(\mu)\right)
$$

as described in the lectures. Then find all differential 1-forms ω on \mathbf{R}^{3} for which $d \omega=0$. That done, you are finished. Why?

