MATHEMATICS 212

ASSIGNMENT 10 Due: April 27, 2015

 01° Let μ be the differential 1-form:

$$\mu = (y+z)dx + (x+z)dy + (x+y)dz$$

on \mathbb{R}^3 . Verify that $d\mu = 0$. Find all differential 0-forms λ :

$$\lambda = \lambda(x, y, z)$$

on \mathbf{R}^3 such that:

$$d\lambda = \mu$$

To that end, introduce the *homotopy* H carrying $\mathbf{I} \times \mathbf{R}^3$ to \mathbf{R}^3 , defined as follows:

$$H(t,x,y,z) = (tx,ty,tz) \qquad (0 \le t \le 1)$$

Compute:

$$\lambda = K(H^*(\mu))$$

as described in the lectures. Then find all differential 0-forms ω on \mathbb{R}^3 for which $d\omega = 0$. That done, you are finished. Why?

 02° Let μ be the differential 2-form:

$$\mu = 3xy^2 z dy dz - y^3 z dz dx + x^2 y^2 dx dy$$

on \mathbf{R}^3 . Verify that $d\mu = 0$. Find all differential 1-forms λ :

$$\lambda = f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz$$

on \mathbf{R}^3 such that:

$$d\lambda = \mu$$

To that end, introduce the *homotopy* H carrying $\mathbf{I} \times \mathbf{R}^3$ to \mathbf{R}^3 , defined as follows:

$$H(t, x, y, z) = (tx, ty, tz) \qquad (0 \le t \le 1)$$

Compute:

$$\lambda = K(H^*(\mu))$$

as described in the lectures. Then find all differential 1-forms ω on \mathbb{R}^3 for which $d\omega = 0$. That done, you are finished. Why?

 03° Let Ω be the positive octant in \mathbb{R}^3 :

Let μ be the differential 1-form on Ω , defined as follows:

$$\mu = x \frac{1 - \log(r)}{r^3} dx + y \frac{1 - \log(r)}{r^3} dy + z \frac{1 - \log(r)}{r^3} dz$$

As usual, $r^2 = x^2 + y^2 + z^2$. Verify that $d\mu = 0$. Find all differential 0-forms λ on Ω such that:

$$d\lambda = \mu$$

You might want to apply the homotopy H carrying $I\times \Omega$ to $\Omega,$ defined as follows:

$$H(t, x, y, z) = (1 - t)(1, 1, 1) + t(x, y, z) \qquad (0 \le t \le 1, (x, y, z) \in \Omega)$$

Compute:

$$\lambda = K(H^*(\mu))$$

as described in the lectures. Then find all differential 0-forms ω on \mathbb{R}^3 for which $d\omega = 0$. That done, you are finished. Why?

04° Let μ be the differential 2-form on \mathbb{R}^3 , defined as follows:

$$\mu = (xy - xz)dydz + (yz - yx)dzdx + (zx - zy)dxdy$$

Verify that $d\mu = 0$. Find all differential 1-forms λ :

$$\lambda = f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz$$

on \mathbf{R}^3 such that:

$$d\lambda = \mu$$

Naturally, you will want to apply the homotopy H carrying $I \times \mathbf{R}^3$ to \mathbf{R}^3 , defined as follows:

$$H(t, x, y, z) = (tx, ty, tz) \qquad (0 \le t \le 1, (x, y, z) \in \mathbf{R}^3)$$

Compute:

$$\lambda = K(H^*(\mu))$$

as described in the lectures. Then find all differential 1-forms ω on \mathbb{R}^3 for which $d\omega = 0$. That done, you are finished. Why?