MATHEMATICS 212

ASSIGNMENT 9

Due: April 15, 2015
01° Let f be a function defined on a region Ω in \mathbf{R}^{3}. Let S be the surface in \mathbf{R}^{3} defined implicitly by f, as follows:

$$
f(x, y, z)=0 \quad((x, y, z) \in \Omega)
$$

The 2-form:

$$
\sigma=*\left(\frac{1}{\|\nabla f\|} d f\right)
$$

is the area 2-form for S. Why? Now compute the surface area of the parabolic surface S defined as follows:

$$
z-x^{2}-y^{2}=0, \quad 0 \leq z \leq c^{2} \quad\left((x, y, z) \in \mathbf{R}^{3}\right)
$$

where c is a positive real number. To do so, design an appropriate 2-chain H. 02° With reference to the first problem, find the surface area of the conical surface S defined as follows:

$$
z^{2}-x^{2}-y^{2}=0, \quad 0 \leq z \leq c \quad\left((x, y, z) \in \mathbf{R}^{3}\right)
$$

where c is a positive real number. To do so, design an appropriate 2-chain H.
03° Consider the 2-form:

$$
\mu=\frac{1}{r^{3}}(*(r d r))
$$

on $\mathbf{R}^{3} \backslash\{\mathbf{0}\}$. Show that:

$$
d \mu=0
$$

Suppose that there is a 1-form λ on $\mathbf{R}^{3} \backslash\{\mathbf{0}\}$ such that:

$$
d \lambda=\mu
$$

Apply Stokes' Theorem to show that:

$$
\int_{H} \mu=0
$$

where H is the familiar 2-chain which serves to parametrize \mathbf{S}^{2}. But this cannot be so. Why?

