MATHEMATICS 212

ASSIGNMENT 9 Due: April 15, 2015

01° Let f be a function defined on a region Ω in \mathbb{R}^3 . Let S be the surface in \mathbb{R}^3 defined implicitly by f, as follows:

$$f(x, y, z) = 0 \qquad ((x, y, z) \in \Omega)$$

The 2-form:

$$\sigma = *(\frac{1}{\|\nabla f\|} df)$$

is the area 2-form for S. Why? Now compute the surface area of the parabolic surface S defined as follows:

$$z - x^2 - y^2 = 0, \qquad 0 \le z \le c^2 \qquad ((x, y, z) \in \mathbf{R}^3)$$

where c is a positive real number. To do so, design an appropriate 2-chain H.

 $02^\circ~$ With reference to the first problem, find the surface area of the conical surface S defined as follows:

$$z^{2} - x^{2} - y^{2} = 0, \qquad 0 \le z \le c \qquad ((x, y, z) \in \mathbf{R}^{3})$$

where c is a positive real number. To do so, design an appropriate 2-chain H.

 03° Consider the 2-form:

$$\mu = \frac{1}{r^3} (*(rdr))$$

on $\mathbf{R}^{3} \setminus \{\mathbf{0}\}$. Show that:

$$d\mu = 0$$

Suppose that there is a 1-form λ on $\mathbb{R}^3 \setminus \{0\}$ such that:

$$d\lambda = \mu$$

Apply Stokes' Theorem to show that:

$$\int_{H} \mu = 0$$

where H is the familiar 2-chain which serves to parametrize S^2 . But this cannot be so. Why?