MATHEMATICS 212

ASSIGNMENT 8

Due: April 8, 2015
01° Let I be the 1-cube in \mathbf{R} defined as follows:

$$
t \in I \quad \text { iff } \quad 0 \leq t \leq 1
$$

Let C be the simple 1-chain in \mathbf{R}^{3} defined as follows:

$$
C(t)=(x, y, z)=(\cos (4 \pi t), \sin (4 \pi t), 4 \pi t) \quad(t \in I)
$$

Let λ be the 1-form on \mathbf{R}^{3} defined as follows:

$$
\lambda=-y d x+x d y+d z
$$

Compute:

$$
\int_{C} \lambda=\int_{I} H^{*}(y d x-x d y+d z)=\int_{0}^{1} f(t) d t
$$

Of course, you must first compute f.
02° Let I^{2} be the 2-cube in \mathbf{R}^{2} defined as follows:

$$
(u, v) \in I^{2} \quad \text { iff } \quad 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1
$$

Let H be the simple 2-chain in \mathbf{R}^{3} defined as follows:

$$
H(u, v)=(x, y, z)=\left(u+v, u^{2}, v^{2}\right) \quad\left((u, v) \in I^{2}\right)
$$

Let λ be the 2-form on \mathbf{R}^{3} defined as follows:

$$
\lambda=d x d y+y d x d z
$$

Compute:

$$
\int_{H} \lambda=\int_{I^{2}} H^{*}(d x d y+y d x d z)=\int_{0}^{1} \int_{0}^{1} g(u, v) d u d v
$$

Of course, you must first compute g.
03° Let V be a vector field defined on (a subset of) \mathbf{R}^{3} :

$$
V=(A, B, C)
$$

Let λ be the corresponding differential 1-form:

$$
\lambda=A d x+B d y+C d z
$$

In turn, let I^{2} be the 2-cube in \mathbf{R}^{2} and let H be the simple 2-chain in \mathbf{R}^{3} defined as follows:

$$
H(u, v)=(x, y, z)=(a(u, v), b(u, v), c(u, v)) \quad\left((u, v) \in I^{2}\right)
$$

Let the range $S=H\left(I^{2}\right)$ of H be included in the domain of V. Of course, there must be a function h defined on I^{2} such that:

$$
H^{*}(* \lambda)=h d u d v
$$

Show that:

$$
h=\hat{V} \bullet(P \times Q)=(\hat{V} \bullet N)\|P \times Q\|
$$

where $\hat{V}=V \cdot H$, where P and Q are the columns of the total derivative $D H$ of H :

$$
P=\left(\begin{array}{c}
\partial x / \partial u \\
\partial y / \partial u \\
\partial z / \partial u
\end{array}\right), \quad Q=\left(\begin{array}{c}
\partial x / \partial v \\
\partial y / \partial v \\
\partial z / \partial v
\end{array}\right)
$$

and where:

$$
N=\frac{1}{\|P \times Q\|}(P \times Q)
$$

Conclude that:

$$
\begin{aligned}
\int_{H} * \lambda & =\int_{0}^{1} \int_{0}^{1}(V(H(u, v)) \bullet N(u, v))\|(P \times Q)(u, v)\| d u d v \\
& =\int_{0}^{1} \int_{0}^{1} V(H(u, v)) \bullet(P \times Q)(u, v) d u d v
\end{aligned}
$$

In this way, we see that the formalism of differential forms reproduces the classical definition of surface integrals.
04° In context of the preceding problem, consider the case in which the restriction of V to S "coincides" with N. More precisely:

$$
\hat{V}=N
$$

Show that, in such a case:

$$
\int_{H} * \lambda=\sigma
$$

where σ is the surface area of S. In such a case, we interpret $* \lambda$ to be the surface area 2 -form for S. For example, let r be any positive number and let H be the simple 2-chain in \mathbf{R}^{3} defined as follows:

$$
\begin{aligned}
H(u, v) & =(x, y, z) \\
& \left.=\left(r \cos \left(\frac{\pi}{2} \bar{v}\right) \cos (\pi \bar{u}), r \cos \left(\frac{\pi}{2} \bar{v}\right) \sin (\pi \bar{u}), r \sin \left(\frac{\pi}{2} \bar{v}\right)\right)\right) \quad\left((u, v) \in I^{2}\right)
\end{aligned}
$$

where:

$$
\bar{u}=2 u-1, \quad \bar{v}=2 v-1
$$

Of course, $S=H\left(I^{2}\right)$ is the sphere in \mathbf{R}^{3} for which the radius is r. Describe a vector field V for which $N=V \cdot H$ and calculate $* \lambda$.
05^{\bullet} For class discussion. Let ρ and σ be real numbers for which $0<\rho<\sigma$. Let I^{3} be the 3-cube in \mathbf{R}^{3} and let H be the simple 3-chain in \mathbf{R}^{3} defined as follows:

$$
H:\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \longrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
(\sigma+\rho u \cos (2 \pi w)) \cos (2 \pi v) \\
(\sigma+\rho u \cos (2 \pi w)) \sin (2 \pi v) \\
\rho u \sin (2 \pi w)
\end{array}\right)
$$

where:

$$
0 \leq u \leq 1, \quad 0 \leq v \leq 1, \quad 0 \leq w \leq 1
$$

Let $T=H\left(I^{3}\right)$ be the range of H. Clearly, T is a (solid) torus. Describe the boundary δH of H :

$$
\delta H=\sum_{\alpha=0}^{1} \sum_{j=1}^{3}(-1)^{\alpha+j} H^{j, \alpha}
$$

where $H^{j, \alpha}$ is the simple 2-chain in \mathbf{R}^{n} defined as follows:

$$
\begin{aligned}
H^{1,0}\left(t_{1}, t_{2}\right) & =H\left(0, t_{1}, t_{2}\right) \\
H^{1,1}\left(t_{1}, t_{2}\right) & =H\left(1, t_{1}, t_{2}\right) \\
H^{2,0}\left(t_{1}, t_{2}\right) & =H\left(t_{1}, 0, t_{2}\right) \\
H^{2,1}\left(t_{1}, t_{2}\right) & =H\left(t_{1}, 1, t_{2}\right) \\
H^{3,0}\left(t_{1}, t_{2}\right) & =H\left(t_{1}, t_{2}, 0\right) \\
H^{3,1}\left(t_{1}, t_{2}\right) & =H\left(t_{1}, t_{2}, 1\right)
\end{aligned}
$$

