MATHEMATICS 212

ASSIGNMENT 7

Due: March 18, 2015
01° Let r be the function defined on \mathbf{R}^{3} as usual:

$$
r(x, y, z):=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Calculate:

$$
\frac{1}{3} d(*(r d r))
$$

[Note that $r^{2}=x^{2}+y^{2}+z^{2}$. Verify that $r d r=x d x+y d y+z d z$.]
02° Verify that, for any differential forms μ and ν on \mathbf{R}^{3} :

$$
d(\mu \nu)=(d \mu) \nu+(-1)^{k} \mu(d \nu)
$$

where μ is a k-form $(0 \leq k \leq 3)$.
03° Let k be an integer for which $0 \leq k \leq 3$. Let λ be a k-form on \mathbf{R}^{3}. By definition, $d \lambda$ is a $(k+1)$-form on \mathbf{R}^{3}. Show that:

$$
d d \lambda=0
$$

04° Verify that, for each k-form λ on $\mathbf{R}^{3}, * * \lambda=\lambda$.
05° For the 1-form:

$$
\lambda=p d x+q d y+r d z
$$

on \mathbf{R}^{3}, calculate:

$$
\mu=* d \lambda
$$

We may say that $* d \lambda$ is the curl of λ.
06° Let k be an integer for which $0 \leq k \leq 3$. Let μ be a k-form on \mathbf{R}^{3}. We define the coderivative of μ as follows:

$$
\delta \mu=(-1)^{k+1}(* d *) \mu
$$

Note that $\delta \mu$ is a $(k-1)$-form on \mathbf{R}^{3}. Show that:

$$
\delta \delta \mu=0
$$

07° For the 1-form:

$$
\lambda=p d x+q d y+r d z
$$

on \mathbf{R}^{3}, calculate:

$$
\mu=\delta \lambda
$$

We may say that $\delta \lambda$ is the divergence of λ.
08° Let k be an integer for which $0 \leq k \leq 3$. Let ν be a k-form on \mathbf{R}^{3}. We define the laplacian of ν as follows:

$$
\triangle \nu=(\delta+d)^{2} \nu=(\delta d+d \delta) \nu
$$

Note that $\Delta \nu$ is a k-form on \mathbf{R}^{3}. For the 0 -form ϕ, verify that:

$$
\triangle \phi=(\delta d) \phi=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \phi
$$

For the cases in which $1 \leq k \leq 3$, verify that:

$$
\begin{gathered}
\triangle(p d x+q d y+r d z)=(\triangle p) d x+(\triangle q) d y+(\triangle r) d z \\
\triangle(u d y d z+v d z d x+w d x d y)=(\triangle u) d y d z+(\triangle v) d z d x+(\triangle w) d x d y \\
\triangle(h d x d y d z)=(\triangle h) d x d y d z
\end{gathered}
$$

