MATHEMATICS 212

ASSIGNMENT 7 Due: March 18, 2015

 01° Let r be the function defined on \mathbf{R}^3 as usual:

$$r(x,y,z) := \sqrt{x^2 + y^2 + z^2}$$

Calculate:

$$\frac{1}{3}d(*(rdr))$$

[Note that $r^2 = x^2 + y^2 + z^2$. Verify that rdr = xdx + ydy + zdz.]

02° Verify that, for any differential forms μ and ν on \mathbf{R}^3 :

$$d(\mu\nu) = (d\mu)\nu + (-1)^k \mu(d\nu)$$

where μ is a k-form $(0 \le k \le 3)$.

03° Let k be an integer for which $0 \le k \le 3$. Let λ be a k-form on \mathbb{R}^3 . By definition, $d\lambda$ is a (k + 1)-form on \mathbb{R}^3 . Show that:

 $dd\lambda=0$

- 04° Verify that, for each k-form λ on \mathbb{R}^3 , $**\lambda = \lambda$.
- 05° For the 1-form:

 $\lambda = p \, dx + q \, dy + r \, dz$

on \mathbf{R}^3 , calculate:

 $\mu = *d\lambda$

We may say that $*d\lambda$ is the *curl* of λ .

06° Let k be an integer for which $0 \le k \le 3$. Let μ be a k-form on \mathbb{R}^3 . We define the *coderivative* of μ as follows:

$$\delta \mu = (-1)^{k+1} (*d*) \mu$$

Note that $\delta \mu$ is a (k-1)-form on \mathbb{R}^3 . Show that:

$$\delta\delta\mu = 0$$

 07° For the 1-form:

$$\lambda = p \, dx + q \, dy + r \, dz$$

on \mathbf{R}^3 , calculate:

 $\mu = \delta \lambda$

We may say that $\delta \lambda$ is the *divergence* of λ .

08° Let k be an integer for which $0 \le k \le 3$. Let ν be a k-form on \mathbb{R}^3 . We define the *laplacian* of ν as follows:

$$\Delta \nu = (\delta + d)^2 \nu = (\delta d + d\delta) \nu$$

Note that $\Delta \nu$ is a k-form on \mathbb{R}^3 . For the 0-form ϕ , verify that:

$$\triangle \phi = (\delta d)\phi = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\phi$$

For the cases in which $1 \le k \le 3$, verify that:

 $\triangle (pdx + qdy + rdz) = (\triangle p)dx + (\triangle q)dy + (\triangle r)dz$

 $\triangle (udydz + vdzdx + wdxdy) = (\triangle u)dydz + (\triangle v)dzdx + (\triangle w)dxdy$

 $\triangle(hdxdydz) = (\triangle h)dxdydz$