MATHEMATICS 212

ASSIGNMENT 6

Due: March 11, 2015
01° Let ρ and σ be real numbers for which $0<\rho<\sigma$. Let T be the solid torus in \mathbf{R}^{3} defined as follows:

$$
\begin{aligned}
& x=(\sigma+r \cos (\theta)) \cos (\phi) \\
& y=(\sigma+r \cos (\theta)) \sin (\phi) \quad(0 \leq r \leq \rho, 0 \leq \phi \leq 2 \pi, 0 \leq \theta \leq 2 \pi)) \\
& z=r \sin (\theta)
\end{aligned}
$$

Let S be the toral surface of T :

$$
\begin{aligned}
& x=(\sigma+\rho \cos (\theta)) \cos (\phi) \\
& y=(\sigma+\rho \cos (\theta)) \sin (\phi) \quad(0 \leq \phi \leq 2 \pi, 0 \leq \theta \leq 2 \pi)) \\
& z=\rho \sin (\theta)
\end{aligned}
$$

Let F be the vector field defined on \mathbf{R}^{3} as follows:

$$
F(x, y, z)=(x, y, z) \quad\left((x, y, z) \in \mathbf{R}^{3}\right)
$$

Verify the following instance of Gauss' Theorem:

$$
\iint_{S} F \bullet d S=\iiint_{T} d i v(F) d V
$$

02° Let ρ be a real number for which $0<\rho$. Let S be the semi spherical surface in \mathbf{R}^{3} defined as follows:

$$
\begin{aligned}
& x=\rho \cos (\theta) \cos (\phi) \\
& y=\rho \cos (\theta) \sin (\phi) \quad(-\pi \leq \phi \leq \pi, 0 \leq \theta \leq \pi / 2) \\
& z=\rho \sin (\theta)
\end{aligned}
$$

Let Γ be the boundary curve for S :

$$
\begin{aligned}
& x=\rho \cos (\omega) \\
& y=\rho \sin (\omega) \quad(-\pi \leq \omega \leq \pi) \\
& z=0
\end{aligned}
$$

Let F be the vector field defined on \mathbf{R}^{3} as follows:

$$
F(x, y, z)=(-y, x, x y z) \quad\left((x, y, z) \in \mathbf{R}^{3}\right)
$$

Verify the following instance of Stokes' Theorem:

$$
\int_{\Gamma} F d s=\iint_{S}(\nabla \times F) \bullet d S
$$

03° Let H be the stereographic parametrization of \mathbf{S}^{2}, defined as follows:

$$
H(u, v)=(x, y, z)
$$

where (u, v) is any ordered pair in \mathbf{R}^{2} and where (x, y, z) is the corresponding ordered triple in \mathbf{R}^{3} :

$$
x=\frac{2 u}{u^{2}+v^{2}+1}, \quad y=\frac{2 v}{u^{2}+v^{2}+1}, \quad z=\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}
$$

One can easily verify that H carries \mathbf{R}^{2} bijectively to $\mathbf{S}^{2} \backslash\{N\}$, where N is the "north pole" in \mathbf{S}^{2} :

$$
N=(0,0,1)
$$

Show that H is a conformal parametrization of \mathbf{S}^{2}. That is, show that, for any ordered pair (u, v) in \mathbf{R}^{2}, the columns of $D H(u, v)$ are orthogonal and they have the same length:

$$
D H(u, v)=\left(\begin{array}{lll}
P(u, v) & Q(u, v)
\end{array}\right)=\left(\begin{array}{ll}
x_{u}(u, v) & x_{v}(u, v) \\
y_{u}(u, v) & y_{v}(u, v) \\
z_{u}(u, v) & z_{v}(u, v)
\end{array}\right)
$$

Apply the parametrization H of \mathbf{S}^{2} to compute the surface area of \mathbf{S}^{2}. You should find 4π, of course.

