MATHEMATICS 212

ASSIGNMENT 6 Due: March 11, 2015

01° Let ρ and σ be real numbers for which $0 < \rho < \sigma$. Let T be the solid torus in \mathbb{R}^3 defined as follows:

$$\begin{aligned} x &= (\sigma + r\cos(\theta))\cos(\phi) \\ y &= (\sigma + r\cos(\theta))\sin(\phi) \quad (0 \le r \le \rho, 0 \le \phi \le 2\pi, 0 \le \theta \le 2\pi)) \\ z &= r\sin(\theta) \end{aligned}$$

Let S be the toral surface of T:

$$\begin{aligned} x &= (\sigma + \rho cos(\theta)) cos(\phi) \\ y &= (\sigma + \rho cos(\theta)) sin(\phi) \quad (0 \le \phi \le 2\pi, 0 \le \theta \le 2\pi)) \\ z &= \rho sin(\theta) \end{aligned}$$

Let F be the vector field defined on \mathbf{R}^3 as follows:

$$F(x, y, z) = (x, y, z) \qquad ((x, y, z) \in \mathbf{R}^3)$$

Verify the following instance of Gauss' Theorem:

$$\iint_{S} F \bullet dS = \iiint_{T} div(F) dV$$

02° Let ρ be a real number for which $0 < \rho$. Let S be the semi spherical surface in \mathbb{R}^3 defined as follows:

$$\begin{aligned} x &= \rho \cos(\theta) \cos(\phi) \\ y &= \rho \cos(\theta) \sin(\phi) \quad (-\pi \le \phi \le \pi, 0 \le \theta \le \pi/2) \\ z &= \rho \sin(\theta) \end{aligned}$$

Let Γ be the boundary curve for S:

$$\begin{aligned} x &= \rho \cos(\omega) \\ y &= \rho \sin(\omega) \quad (-\pi \le \omega \le \pi) \\ z &= 0 \end{aligned}$$

Let F be the vector field defined on \mathbf{R}^3 as follows:

$$F(x, y, z) = (-y, x, xyz) \qquad ((x, y, z) \in \mathbf{R}^3)$$

Verify the following instance of Stokes' Theorem:

$$\int_{\Gamma} F \, ds = \iint_{S} (\nabla \times F) \bullet dS$$

 03° Let *H* be the stereographic parametrization of S^2 , defined as follows:

$$H(u,v) = (x,y,z)$$

where (u, v) is any ordered pair in \mathbb{R}^2 and where (x, y, z) is the corresponding ordered triple in \mathbb{R}^3 :

$$x = \frac{2u}{u^2 + v^2 + 1}, \ y = \frac{2v}{u^2 + v^2 + 1}, \ z = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}$$

One can easily verify that H carries ${\bf R}^2$ bijectively to ${\bf S}^2\backslash\{N\},$ where N is the "north pole" in ${\bf S}^2$:

$$N = (0, 0, 1)$$

Show that H is a conformal parametrization of S^2 . That is, show that, for any ordered pair (u, v) in \mathbb{R}^2 , the columns of DH(u, v) are orthogonal and they have the same length:

$$DH(u,v) = (P(u,v) \quad Q(u,v)) = \begin{pmatrix} x_u(u,v) & x_v(u,v) \\ y_u(u,v) & y_v(u,v) \\ z_u(u,v) & z_v(u,v) \end{pmatrix}$$

Apply the parametrization H of \mathbf{S}^2 to compute the surface area of \mathbf{S}^2 . You should find 4π , of course.