MATHEMATICS 212

ASSIGNMENT 5

Due: March 4, 2015
01° Let ρ and σ be positive real numbers. Let K be the circular disk in \mathbf{R}^{2} defined by the relation

$$
(u, v) \in K \quad \text { iff } \quad u^{2}+v^{2} \leq \rho^{2}
$$

Let S be the surface in \mathbf{R}^{3} parametrized by the mapping:

$$
H(u, v)=(x, y, z)=\left(u, v, \sigma \sqrt{u^{2}+v^{2}}\right) \quad((u, v) \in K)
$$

Draw a picture of S. Compute the surface area of S.
02° Let ρ and σ be positive real numbers. Let K be the circular disk in \mathbf{R}^{2} defined by the relation

$$
(u, v) \in K \quad \text { iff } \quad u^{2}+v^{2} \leq \rho^{2}
$$

Let S be the surface in \mathbf{R}^{3} parametrized by the mapping:

$$
H(u, v)=(x, y, z)=\left(u, v, \sigma\left(u^{2}+v^{2}\right)\right) \quad((u, v) \in K)
$$

Draw a picture of S. Compute the surface area of S.
03° Let α, β, and γ be positive real numbers. Let K be the rectangle in \mathbf{R}^{2} defined by the relation:

$$
(\phi, \theta) \in K \quad \text { iff } \quad-\pi<\phi<\pi,-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

Let S be the surface in \mathbf{R}^{3} parametrized by the mapping:

$$
H(\phi, \theta)=(x, y, z)=(\alpha \cos (\theta) \cos (\phi), \beta \cos (\theta) \sin (\phi), \gamma \sin (\theta)) \quad((\phi, \theta) \in K)
$$

Draw a picture of S. TRY to compute the surface area of S.
04° Let r and s be numbers for which $0<r<s$. Let K be the subset of \mathbf{R}^{3} defined by the relations:

$$
-\pi \leq v \leq \pi, \quad-\pi \leq w \leq \pi
$$

Let S be the surface in \mathbf{R}^{3} defined by the mapping:
$H=(x, y, z)=((s+r \cos v) \cos w,(s+r \cos v) \sin w, r \sin v) \quad((v, w) \in K)$
Draw a picture of S. Compute the surface area of S.
05^{\bullet} Find the area of the intersection of a solid circular cylinder and a plane.

```
\(r=1 ; s=2\);
ParametricPlot \(3 \mathrm{D}[\{(\mathrm{s}+\mathrm{r} * \operatorname{Cos}[\mathrm{v}]) * \operatorname{Cos}[w],(s+r * \operatorname{Cos}[v]) * \operatorname{Sin}[w], r * \operatorname{Sin}[v]\}\), \{v, -Pi, Pi\}, \{w, -Pi, Pi\}]
```


