MATHEMATICS 212

ASSIGNMENT 4

Due: February 25, 2015
01° Let B be the subset of \mathbf{R}^{3} defined by the relations:

$$
0 \leq x, 0 \leq y, 0 \leq z, x^{2}+y^{2}+z^{2} \leq 1
$$

Calculate:

$$
\iiint_{B} x y z d x d y d z
$$

02° Let B be the unit ball in \mathbf{R}^{3}, composed of the points $Q=(x, y, z)$ for which $x^{2}+y^{2}+z^{2} \leq 1$. Let $P=(u, v, w)$ be a point in \mathbf{R}^{3} for which $1<u^{2}+v^{2}+w^{2}$. Find the average of the distances from P to the various points Q in B.
03° Let r be any positive number. Let n be any positive integer. Let $S_{n}(r)$ be the subset of \mathbf{R}^{n} defined by the relations:

$$
0 \leq x_{1}, 0 \leq x_{2}, \ldots, 0 \leq x_{n}, x_{1}+x_{2}+\cdots+x_{n} \leq r
$$

Show that:

$$
\operatorname{vol}\left(S_{n}(r)\right):=\iint \cdots \int_{S_{n}(r)} d x_{1} d x_{2} \cdots d x_{n}=\frac{r^{n}}{n!}
$$

Argue by induction, using Fubini's Theorem.
04° Let K be the unit vector in \mathbf{R}^{3} defined as follows:

$$
K=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Let a be a real number for which $0 \leq a \leq 1$. Let D be the subset of \mathbf{R}^{3} consisting of all (nonzero) vectors P :

$$
P=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

for which:

$$
\|P\| \leq 1 \quad \text { and } \quad a \leq\left(\frac{1}{\|P\|} \cdot P\right) \bullet K
$$

Calculate:

$$
\operatorname{vol}(D)=\iiint_{D} d x d y d z
$$

and:

$$
\iiint_{D} x d x d y d z, \quad \iiint_{D} y d x d y d z, \quad \iiint_{D} z d x d y d z
$$

05^{\bullet} Let r and s be numbers for which:

$$
0<r<s
$$

Let A be the subset of \mathbf{R}^{3} defined by the relations:

$$
0 \leq u \leq r, \quad-\pi \leq v \leq \pi, \quad-\pi \leq w \leq \pi
$$

Let H be the mapping defined as follows:

$$
H: \quad(u, v, w) \longrightarrow(x, y, z) \quad((u, v, w) \in A)
$$

where:

$$
(x, y, z)=((s+u \cos v) \cos w,(s+u \cos v) \sin w, u \sin v)
$$

Let B be the range of H. What is it? Compute:

$$
\operatorname{vol}(B)=\iiint_{B} d x d y d z
$$

by change of variables:

$$
\iiint_{A}|\operatorname{det} D H(u, v, w)| d u d v d w
$$

06^{\bullet} Let a, c, and h be any positive real numbers. Find the volume of the region C which lies above the plane:

$$
z=0
$$

below the plane:

$$
x+c z=h
$$

and inside the right circular cylinder:

$$
x^{2}+y^{2} \leq a^{2}
$$

Draw a diagram of the region.

