MATHEMATICS 212

ASSIGNMENT 2 Due: February 11, 2015

01° Let α be a function defined on the interval $\mathbf{R}^+ := (0, \infty)$ in \mathbf{R} and let ϕ be the scalar field defined on the region $D := \mathbf{R}^3 \setminus \{(0, 0, 0)\}$ in \mathbf{R}^3 , as follows:

$$\phi(x, y, z) = \alpha(r) \qquad (0 < r := \sqrt{x^2 + y^2 + z^2})$$

Show that:

$$(\nabla \phi)(x, y, z) = \alpha^{\circ}(r) \frac{1}{r}(x, y, z) \qquad (0 < r := \sqrt{x^2 + y^2 + z^2})$$

02° Let β be a function defined on the interval $\mathbf{R}^+ := (0, \infty)$ in \mathbf{R} and let F be the vector field defined on the region $D := \mathbf{R}^3 \setminus \{(0, 0, 0)\}$ in \mathbf{R}^3 , as follows:

$$F(x, y, z) = \beta(r)(x, y, z) \qquad (0 < r := \sqrt{x^2 + y^2 + z^2})$$

Show that:

$$(\nabla \times F)(x, y, z) = (0, 0, 0)$$
 $(0 < r := \sqrt{x^2 + y^2 + z^2})$

Find a scalar field ϕ for which:

$$F(x, y, z) = (\nabla \phi)(x, y, z) \qquad (0 < r := \sqrt{x^2 + y^2 + z^2})$$

To do so, apply the foregoing problem. Work out the details for the following case:

$$\beta(r) = r^a \qquad (0 < r)$$

where a is any real number.

03° Let J be an interval in **R** and let D be a region in \mathbf{R}^3 . Let ϕ be a scalar field "defined on D but depending on t":

$$\phi(t, x, y, z) \qquad (t \in J, \ (x, y, z) \in D)$$

One defines the following operator acting on ϕ :

(\bullet) d'Alembertian

$$\Box^2 \phi = \partial^2 \phi / \partial t^2 - \nabla^2 \phi = \partial^2 \phi / \partial t^2 - \partial^2 \phi / \partial x^2 - \partial^2 \phi / \partial y^2 - \partial^2 \phi / \partial z^2$$

Let G and H be vector fields "defined on D but depending on t":

$$G(t, x, y, z), \quad H(t, x, y, z) \qquad (t \in J, \ (x, y, z) \in D)$$

and satisfying the following relations:

$$\nabla \bullet G = 0, \quad \nabla \bullet H = 0$$

$$\partial G/\partial t - \nabla \times H = (0, 0, 0), \qquad \partial H/\partial t + \nabla \times G = (0, 0, 0)$$

Show that:

$$\square^2 G = (0, 0, 0)$$
 and $\square^2 H = (0, 0, 0)$

Of course, $\partial/\partial t$ and \square^2 act on G and H component by component. Conclude that any one of the components of G and H, let it be ϕ , satisfies the **wave equation**:

$$\Box^2 \phi = 0$$

04• Let B be the (unit) rectangle in \mathbf{R}^2 comprised of all ordered pairs (x, y) for which:

$$0 \le x \le 1, \quad 0 \le y \le 1$$

Let f be the (bounded) function defined on \mathbf{R}^2 as follows:

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) \notin B\\ xy^2 & \text{if } (x,y) \in B \end{cases}$$

Apply the basic definition to show that f is integrable and that:

$$\iint f(x,y)dxdy = \frac{1}{6}$$