MATHEMATICS 212

ASSIGNMENT 2

Due: February 11, 2015
01° Let α be a function defined on the interval $\mathbf{R}^{+}:=(0, \infty)$ in \mathbf{R} and let ϕ be the scalar field defined on the region $D:=\mathbf{R}^{3} \backslash\{(0,0,0)\}$ in \mathbf{R}^{3}, as follows:

$$
\phi(x, y, z)=\alpha(r) \quad\left(0<r:=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

Show that:

$$
(\nabla \phi)(x, y, z)=\alpha^{\circ}(r) \frac{1}{r}(x, y, z) \quad\left(0<r:=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

02° Let β be a function defined on the interval $\mathbf{R}^{+}:=(0, \infty)$ in \mathbf{R} and let F be the vector field defined on the region $D:=\mathbf{R}^{3} \backslash\{(0,0,0)\}$ in \mathbf{R}^{3}, as follows:

$$
F(x, y, z)=\beta(r)(x, y, z) \quad\left(0<r:=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

Show that:

$$
(\nabla \times F)(x, y, z)=(0,0,0) \quad\left(0<r:=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

Find a scalar field ϕ for which:

$$
F(x, y, z)=(\nabla \phi)(x, y, z) \quad\left(0<r:=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

To do so, apply the foregoing problem. Work out the details for the following case:

$$
\beta(r)=r^{a} \quad(0<r)
$$

where a is any real number.
03° Let J be an interval in \mathbf{R} and let D be a region in \mathbf{R}^{3}. Let ϕ be a scalar field "defined on D but depending on t ":

$$
\phi(t, x, y, z) \quad(t \in J, \quad(x, y, z) \in D)
$$

One defines the following operator acting on ϕ :
(•) d'Alembertian

$$
\square^{2} \phi=\partial^{2} \phi / \partial t^{2}-\nabla^{2} \phi=\partial^{2} \phi / \partial t^{2}-\partial^{2} \phi / \partial x^{2}-\partial^{2} \phi / \partial y^{2}-\partial^{2} \phi / \partial z^{2}
$$

Let G and H be vector fields "defined on D but depending on t ":

$$
G(t, x, y, z), \quad H(t, x, y, z) \quad(t \in J, \quad(x, y, z) \in D)
$$

and satisfying the following relations:

$$
\begin{gathered}
\nabla \bullet G=0, \quad \nabla \bullet H=0 \\
\partial G / \partial t-\nabla \times H=(0,0,0), \quad \partial H / \partial t+\nabla \times G=(0,0,0)
\end{gathered}
$$

Show that:

$$
\square^{2} G=(0,0,0) \quad \text { and } \quad \square^{2} H=(0,0,0)
$$

Of course, $\partial / \partial t$ and \square^{2} act on G and H component by component. Conclude that any one of the components of G and H, let it be ϕ, satisfies the wave equation:

$$
\square^{2} \phi=0
$$

04^{\bullet} Let B be the (unit) rectangle in \mathbf{R}^{2} comprised of all ordered pairs (x, y) for which:

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 1
$$

Let f be the (bounded) function defined on \mathbf{R}^{2} as follows:

$$
f(x, y)= \begin{cases}0 & \text { if }(x, y) \notin B \\ x y^{2} & \text { if }(x, y) \in B\end{cases}
$$

Apply the basic definition to show that f is integrable and that:

$$
\iint f(x, y) d x d y=\frac{1}{6}
$$

