MATHEMATICS 212

ASSIGNMENT 1

Due: February 4, 2015

01 Memorize the Greek alphabet:

α	alpha	A
β	beta	B
γ	gamma	Γ
δ	delta	Δ
ϵ	epsilon	E
ζ	zeta	Z
η	eta	H
θ	theta	Θ
ι	iota	I
κ	kappa	K
λ	lambda	Λ
μ	mu	M
ν	nu	N
ξ	xi	Ξ
o	omicron	O
π	pi	Π
ρ	rho	P
σ	sigma	Σ
τ	tau	T
v	upsilon	Υ
ϕ	phi	Φ
χ	chi	X
ψ	psi	Ψ
ω	omega	Ω

02° Let ϕ be a scalar field and let F be a vector field on \mathbf{R}^{3}. By definition, ϕ is a function for which the domain is (a suitable subset of) \mathbf{R}^{3} and the codomain is \mathbf{R} :

$$
\phi(x, y, z)
$$

while F is a function for which the domain is (a suitable subset of) \mathbf{R}^{3} and the codomain is \mathbf{R}^{3} :

$$
F(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))
$$

where u, v, and w are (in effect) scalar fields, the components of F.

One defines the following operators acting on ϕ and F :

(•) Gradient

$\nabla \phi=(\partial \phi / \partial x, \partial \phi / \partial y, \partial \phi / \partial z)$
(•) Curl
$\nabla \times F=(\partial w / \partial y-\partial v / \partial z, \partial u / \partial z-\partial w / \partial x, \partial v / \partial x-\partial u / \partial y)$
(•) Divergence
$\nabla \bullet F=\partial u / \partial x+\partial v / \partial y+\partial w / \partial z$
(•) Laplacian

$$
\nabla^{2} \phi=\nabla \bullet(\nabla \phi)=\partial^{2} \phi / \partial x^{2}+\partial^{2} \phi / \partial y^{2}+\partial^{2} \phi / \partial z^{2}
$$

Show that:

$$
\nabla \times(\nabla \phi)=(0,0,0) \quad \text { and } \quad \nabla \bullet(\nabla \times F)=0
$$

03° Given vector fields G and H on \mathbf{R}^{3}, show that:

$$
\nabla \bullet(G \times H)=(\nabla \times G) \bullet H-G \bullet(\nabla \times H)
$$

04° Given a vector field F on \mathbf{R}^{3}, show that:

$$
\nabla \times(\nabla \times F)=\nabla(\nabla \bullet F)-\nabla^{2} F
$$

Of course, ∇^{2} acts on F component by component.
05° Let ϕ be the scalar field on \mathbf{R} defined as follows:

$$
\phi(x, y, z)=-\frac{1}{r} \quad(0<r)
$$

where:

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Calculate:

$$
-(\nabla \phi)(x, y, z)
$$

To that end, note that $\partial r / \partial x=x / r, \partial r / \partial y=y / r$, and $\partial r / \partial z=z / r$.
06° Let D be a subset of \mathbf{R}^{3} and let F be a vector field on \mathbf{R}^{3} defined on D :

$$
F(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z)) \quad((x, y, z) \in D)
$$

Let J be a closed finite interval in \mathbf{R} :

$$
J=[a, b] \quad(a<b)
$$

and let Γ be a (parametrized) curve in \mathbf{R}^{3} defined on J :

$$
\Gamma(t)=(x(t), y(t), z(t)) \quad(a \leq t \leq b)
$$

Let the range of Γ be included in the domain of F :

$$
\Gamma(t) \in D \quad(a \leq t \leq b)
$$

In this context, one defines the line integral of F over Γ as follows:

$$
\begin{aligned}
\int_{\Gamma} F & :=\int_{a}^{b} F(\Gamma(t)) \bullet \Gamma^{\circ}(t) d t \\
& =\int_{a}^{b}\left[\left(u(x(t), y(t), z(t)) x^{\circ}(t)+\left(v(x(t), y(t), z(t)) y^{\circ}(t)+\left(w(x(t), y(t), z(t)) z^{\circ}(t)\right] d t\right.\right.\right.
\end{aligned}
$$

For the following particular cases:

$$
F(x, y, z)=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, z\right) \quad\left(0<x^{2}+y^{2}\right)
$$

and:

$$
\Gamma_{1}(t)=(\cos (t), \sin (t), t), \quad \Gamma_{2}(t)=(\cos (t),-\sin (t), t) \quad(0 \leq t \leq \pi)
$$

show that:

$$
(\nabla \times F)(x, y, z)=(0,0,0)
$$

and:

$$
\int_{\Gamma_{1}} F \neq \int_{\Gamma_{2}} F
$$

Note, however, that the initial points of Γ_{1} and Γ_{2} coincide. The same is true of the terminal points. Finally, with reference to the preceding problem, replace F by:

$$
F(x, y, z)=-(\nabla \phi)(x, y, z)
$$

Show that, in this case:

$$
\int_{\Gamma_{1}} F=\int_{\Gamma_{2}} F
$$

