MATHEMATICS 212

ASSIGNMENT 1 Due: February 4, 2015

 01^{\bullet} Memorize the Greek alphabet:

α	alpha	A
β	beta	B
γ	gamma	Γ
δ	delta	Δ
ϵ	epsilon	E
ζ	zeta	Z
η	eta	H
θ	theta	Θ
ι	iota	Ι
κ	kappa	K
λ	lambda	Λ
μ	mu	M
ν	nu	N
ξ	xi	Ξ
0	omicron	O
π	pi	Π
ρ	rho	P
σ	sigma	Σ
au	tau	T
v	upsilon	Υ
ϕ	$_{\rm phi}$	Φ
χ	chi	X
ψ	$_{\rm psi}$	Ψ
ω	omega	Ω

02° Let ϕ be a scalar field and let F be a vector field on \mathbf{R}^3 . By definition, ϕ is a function for which the domain is (a suitable subset of) \mathbf{R}^3 and the codomain is \mathbf{R} :

 $\phi(x, y, z)$

while F is a function for which the domain is (a suitable subset of) \mathbf{R}^3 and the codomain is \mathbf{R}^3 :

$$F(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z))$$

where u, v, and w are (in effect) scalar fields, the components of F.

One defines the following operators acting on ϕ and F:

- (•) **Gradient** $\nabla \phi = (\partial \phi / \partial x, \, \partial \phi / \partial y, \, \partial \phi / \partial z)$
- (•) **Curl** $\nabla \times F = (\partial w/\partial y - \partial v/\partial z, \ \partial u/\partial z - \partial w/\partial x, \ \partial v/\partial x - \partial u/\partial y)$
- (•) **Divergence** $\nabla \bullet F = \partial u / \partial x + \partial v / \partial y + \partial w / \partial z$
- (•) Laplacian $\nabla^2 \phi = \nabla \bullet (\nabla \phi) = \partial^2 \phi / \partial x^2 + \partial^2 \phi / \partial y^2 + \partial^2 \phi / \partial z^2$

Show that:

$$\nabla \times (\nabla \phi) = (0, 0, 0)$$
 and $\nabla \bullet (\nabla \times F) = 0$

 03° Given vector fields G and H on \mathbb{R}^3 , show that:

$$\nabla \bullet (G \times H) = (\nabla \times G) \bullet H - G \bullet (\nabla \times H)$$

 04° Given a vector field F on \mathbb{R}^3 , show that:

$$\nabla \times (\nabla \times F) = \nabla (\nabla \bullet F) - \nabla^2 F$$

Of course, ∇^2 acts on F component by component.

 05° Let ϕ be the scalar field on **R** defined as follows:

$$\phi(x, y, z) = -\frac{1}{r} \qquad (0 < r)$$

where:

$$r = \sqrt{x^2 + y^2 + z^2}$$

Calculate:

$$-(\nabla\phi)(x,y,z)$$

To that end, note that $\partial r/\partial x = x/r$, $\partial r/\partial y = y/r$, and $\partial r/\partial z = z/r$.

06° Let D be a subset of \mathbf{R}^3 and let F be a vector field on \mathbf{R}^3 defined on D:

$$F(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) \qquad ((x, y, z) \in D)$$

Let J be a closed finite interval in \mathbf{R} :

$$J = [a, b] \qquad (a < b)$$

and let Γ be a (parametrized) curve in \mathbf{R}^3 defined on J:

$$\Gamma(t) = (x(t), y(t), z(t)) \qquad (a \le t \le b)$$

Let the range of Γ be included in the domain of F:

$$\Gamma(t) \in D \qquad (a \le t \le b)$$

In this context, one defines the *line integral* of F over Γ as follows:

$$\int_{\Gamma} F := \int_{a}^{b} F(\Gamma(t)) \bullet \Gamma^{\circ}(t) dt$$

=
$$\int_{a}^{b} \left[\left(u(x(t), y(t), z(t)) x^{\circ}(t) + \left(v(x(t), y(t), z(t)) y^{\circ}(t) + \left(w(x(t), y(t), z(t)) z^{\circ}(t) \right) \right] dt$$

For the following particular cases:

$$F(x, y, z) = (-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, z) \qquad (0 < x^2 + y^2)$$

and:

$$\Gamma_1(t) = (\cos(t), \sin(t), t), \quad \Gamma_2(t) = (\cos(t), -\sin(t), t) \quad (0 \le t \le \pi)$$

show that:

$$(\nabla \times F)(x, y, z) = (0, 0, 0)$$

and:

$$\int_{\Gamma_1} F \neq \int_{\Gamma_2} F$$

Note, however, that the initial points of Γ_1 and Γ_2 coincide. The same is true of the terminal points. Finally, with reference to the preceding problem, replace F by:

$$F(x, y, z) = -(\nabla \phi)(x, y, z)$$

Show that, in this case:

$$\int_{\Gamma_1} F = \int_{\Gamma_2} F$$