VECTORS

Representation of Vectors

1° Let X be any vector. With respect to a given Cartesian coordinate system, we may identify the initial point of X with the origin O of the system:

$$
O=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The coordinates of the terminal point of X then determine X as an ordered triple of numbers:

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Operations on Vectors
$2^{\circ} \quad$ We may form the sum of vectors X and Y :

$$
X+Y=\left(\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right)
$$

and the scalar product of a number c and a vector Z :

$$
c . Z=\left(\begin{array}{l}
c z_{1} \\
c z_{2} \\
c z_{3}
\end{array}\right)
$$

We may form the inner product of vectors X and Y :

$$
X \bullet Y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

and the outer product:

$$
X \times Y=\left(\begin{array}{l}
x_{2} y_{3}-x_{3} y_{2} \\
x_{3} y_{1}-x_{1} y_{3} \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right)
$$

as well. Finally, we may form the length of a vector X :

$$
\|X\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

Properties of the Operations
3° The foregoing operations have the following properties, among many others.

$$
\begin{aligned}
(X+Y)+Z & =X+(Y+Z) \\
(a+b) . Z & =a . Z+b . Z \\
(a b) . Z & =a .(b . Z) \\
X \bullet Y & =Y \bullet X \\
X \bullet(Y+Z) & =X \bullet Y+X \bullet Z \\
(a . X) \bullet Y & =a(X \bullet Y) \\
X \times Y & =-Y \times X \\
X \times(Y+Z) & =X \times Y+X \times Z \\
(a \cdot X) \times Y & =a \cdot(X \times Y) \\
X \bullet(X \times Y) & =0 \\
& =(X \times Y) \bullet Y \\
X \bullet(Y \times Z) & =Y \bullet(Z \times X) \\
& =Z \bullet(X \times Y) \\
X \times(Y \times Z) & =(X \bullet Z) . Y-(X \bullet Y) . Z \\
X X \|^{2} & =X \bullet X \\
X \bullet Y & =\|X\|\|Y\| \cos (\theta) \\
\|X \times Y\| & =\|X\|\|Y\| \sin (\theta)
\end{aligned}
$$

In the last two relations, θ is the (unordered) angle between X and Y.
4° For any vector X :

$$
X=x_{1} \cdot E_{1}+x_{2} \cdot E_{2}+x_{3} \cdot E_{3}
$$

where:

$$
E_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad E_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad E_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

