TAYLOR'S THEOREM

Thomas Wieting
1998
$1^{\circ} \quad$ Let n be a positive integer. Let A be an open subset of \mathbf{R}^{n} and let f be a real-valued function defined on A, sufficiently smooth so that the following discussion makes sense. Let a be a member of A :

$$
a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Let k be a nonnegative integer. One defines the k-th order Taylor polynomial for f at a as follows:

$$
\left(T_{a}^{k} f\right)(x):=\sum_{j=0}^{k} \frac{1}{j!}\left(H_{a}^{j} f\right)(x) \quad\left(x \in \mathbf{R}^{n}\right)
$$

where:

$$
\left(H_{a}^{j} f\right)(x):=\sum_{|\gamma|=j} \frac{j!}{\gamma!}\left(D^{\gamma} f\right)(a)(x-a)^{\gamma}
$$

In the foregoing expressions, we have applied the following notation. For each γ in \mathbf{N}^{n} :

$$
\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)
$$

one defines:

$$
|\gamma|:=\sum_{m=1}^{n} \gamma_{m}, \quad \gamma!:=\prod_{m=1}^{n} \gamma_{m}!
$$

For each γ in \mathbf{N}^{n} and for each y in \mathbf{R}^{n} :

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

one defines:

$$
y^{\gamma}:=\prod_{m=1}^{n} y_{m}^{\gamma_{m}}
$$

Finally, for each γ in \mathbf{N}^{n}, one defines:

$$
D^{\gamma}:=\prod_{m=1}^{n} D_{m}^{\gamma_{m}}
$$

where D_{1}, D_{2}, \ldots, and D_{n} are the usual operators of differentiation:

$$
D_{m} f:=\frac{\partial}{\partial x_{m}} f \quad(1 \leq m \leq n)
$$

2° One defines the k-th order remainder function for f at a as follows:

$$
\left(R_{a}^{k} f\right)(x):=f(x)-\left(T_{a}^{k} f\right)(x) \quad(x \in A)
$$

so that:

$$
f(x)=\left(T_{a}^{k} f\right)(x)+\left(R_{a}^{k} f\right)(x) \quad(x \in A)
$$

3° Now let x be any member of A and let L be the line segment joining a and x. Let us assume that L is included in A, which would surely be true if x is "sufficiently near" a. Taylor's Theorem states that there must be some y in L such that:

$$
\left(R_{a}^{k} f\right)(x)=\frac{1}{(k+1)!} \sum_{|\gamma|=k+1} \frac{(k+1)!}{\gamma!}\left(D^{\gamma} f\right)(y)(x-a)^{\gamma}
$$

$4^{\circ} \quad$ Let h be the function defined as follows:

$$
h(t)=f((1-t) a+t x) \quad(0 \leq t \leq 1)
$$

Applying the elementary form of Taylor's Theorem to h, we find that there must be some u in $(0,1)$ such that:

$$
h(1)=\sum_{j=0}^{k} \frac{1}{j!} h^{(j)}(0)(1-0)^{j}+\frac{1}{(k+1)!} h^{(k+1)}(u)(1-0)^{k+1}
$$

To prove the general form of Taylor's Theorem, we need only apply the Chain Rule to show that:

$$
h^{(j)}(t)=\sum_{|\gamma|=j} \frac{j!}{\gamma!}\left(D^{\gamma} f\right)((1-t) a+t x)(x-a)^{\gamma}
$$

