MATHEMATICS 211

ASSIGNMENT 6

Due: October 15, 2014
01° Let N be the vector in \mathbf{R}^{3} defined as follows:

$$
N \equiv \frac{\sqrt{3}}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad(\|N\|=1)
$$

Let Λ be the reflection on \mathbf{R}^{3} defined by N :

$$
\Lambda(X) \equiv X-2(X \bullet N) N \quad\left(X \in \mathbf{R}^{3}\right)
$$

Note that Λ is linear. Find the matrix for Λ. Compute the determinant of the matrix.
[Let c stand for $(1 / 3) \sqrt{3}$. We find that:

$$
\Lambda\left(E_{1}\right)=E_{1}-2 c N, \Lambda\left(E_{2}\right)=E_{2}-2 c N, \Lambda\left(E_{3}\right)=E_{3}-2 c N
$$

Consequently:

$$
\Lambda=\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & -2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right)
$$

Hence:

$$
\operatorname{det}(\Lambda)=-1
$$

]
02° Again, let N be the vector in \mathbf{R}^{2} defined as follows:

$$
N \equiv \frac{\sqrt{3}}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

and let A be the corresponding antisymmetric matrix:

$$
A \equiv \frac{\sqrt{3}}{3}\left(\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

Compute the matrix A^{2}. Let θ be any real number. Let R be the ccw rotation about the axis $\mathbf{R} N$ through the angle θ, defined as follows:

$$
R \equiv \exp (\theta A)=I+\sin (\theta) A+(1-\cos (\theta)) A^{2}
$$

(See problem 05^{\bullet}, where the definition of R is "justified.") For the case in which $\theta=\pi / 2$, compute the matrix R explicitly. Then, for the vector:

$$
X \equiv\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)
$$

calculate:

$$
Y=R X
$$

[We have:

$$
\begin{aligned}
R & =I+A+A^{2} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+c\left(\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)+c^{2}\left(\begin{array}{rrr}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)
\end{aligned}
$$

where $c=(1 / 3) \sqrt{3}$. Let $a=(1 / 3)(1-\sqrt{3})$ and $b=(1 / 3)(1+\sqrt{3})$. Then:

$$
R=\left(\begin{array}{ccc}
1 / 3 & a & b \\
b & 1 / 3 & a \\
a & b & 1 / 3
\end{array}\right)
$$

We obtain (by Mathematica):

$$
\left.Y=R X=c\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right) \quad \text { and } \quad Y \bullet X=0=\cos \left(\frac{\pi}{2}\right) \quad\right]
$$

03° Let M be any matrix having three rows and three columns:

$$
M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
$$

One defines the trace of M as follows:

$$
\operatorname{tr}(M)=m_{11}+m_{22}+m_{33}
$$

Now let M^{\prime} and $M^{\prime \prime}$ be any matrices having three rows and three columns. Show that:

$$
\operatorname{tr}\left(M^{\prime} M^{\prime \prime}\right)=\operatorname{tr}\left(M^{\prime \prime} M^{\prime}\right)
$$

[Apply patient computation.]
04° Let M be a matrix with two rows and two columns:

$$
M=\left(\begin{array}{ll}
p & r \\
q & s
\end{array}\right)
$$

Let f be the quadratic polynomial defined as follows:

$$
f(x)=\operatorname{det}(x I-M)=\operatorname{det}\left(\begin{array}{cc}
x-p & r \\
q & x-s
\end{array}\right)
$$

Apply the Quadratic Formula to factor f :

$$
f(x)=(x-u)(x-v)
$$

where u and v are the zeros of f. These zeros are called the characteristic values of M. Verify that:

$$
\operatorname{tr}(M)=u+v, \quad \operatorname{det}(M)=u v
$$

[Obviously:

$$
f(x)=x^{2}-(p+s) x+(p s-q r)=(x-u)(x-v)=x^{2}-(u+v) x+u v
$$

where u and v are the zeros of f, determined by the Quadratic Equation of Olde. The conclusions follow.]
05^{\bullet} Let A be a matrix having 3 rows and 3 columns. One defines $\exp (A)$ as follows:

$$
\exp (A) \equiv \sum_{j=0}^{\infty} \frac{1}{j!} A^{j}=I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3}+\frac{1}{24} A^{4}+\cdots
$$

In particular, let A be antisymmetric:

$$
A=\left(\begin{array}{rrr}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

We find that, for any vectors X and Y in \mathbf{R}^{3} :

$$
\begin{equation*}
A X \bullet Y=-X \bullet A Y \tag{1}
\end{equation*}
$$

Now let $a^{2}+b^{2}+c^{2}=1$. Obviously:

$$
\begin{equation*}
A^{3}=-A \quad \text { hence } \quad A^{4}=-A^{2} \tag{2}
\end{equation*}
$$

Now it is plain that, for each real number t :

$$
\begin{equation*}
\exp (t A)=I+\sin (t) A+(1-\cos (t)) A^{2} \tag{3}
\end{equation*}
$$

We plan to show that $\exp (t A)$ is the ccw rotation carrying \mathbf{R}^{3} to itself, for which the axis of rotation is the line $\mathbf{R} N$ passing through the origin O and for which the angle of rotation is t. To that end, we note that:

$$
\begin{equation*}
\frac{d}{d t} \exp (t A)=A \exp (t A) \tag{4}
\end{equation*}
$$

By (1), (2), and (3) or by (4) alone, we find that, for any vectors X and Y in \mathbf{R}^{3} :

$$
\begin{equation*}
\exp (t A) X \bullet \exp (t A) Y=X \bullet Y \tag{5}
\end{equation*}
$$

Now we can say that $\exp (t A)$ preserves inner products. It also preserves norms. That is, for any vector Z in \mathbf{R}^{3} :

$$
\|\exp (t A) Z\|^{2}=\exp (t A) Z \bullet \exp (t A) Z=Z \bullet Z=\|Z\|^{2}
$$

Let:

$$
N \equiv\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

We note that $A N=N \times N=0$, hence that:

$$
\begin{equation*}
\exp (t A) N=N \tag{6}
\end{equation*}
$$

Let X be any vector in \mathbf{R}^{3} for which $X \bullet N=0$ and let $Y \equiv \exp (t A) X$. Of course, $\|Y\|=\|X\|$. Hence $X \bullet X=\|X\|\|Y\|$. By (5) and (6), $Y \bullet N=0$. We note that, by (1), $X \bullet A X=0$ and (by computation of A^{2}) that $\left(I+A^{2}\right) X=0$. Hence, $A^{2} X=-X$. Now we verify that:

$$
\begin{equation*}
X \bullet Y=\cos (t) X \bullet X=\cos (t)\|X\|\|Y\| \tag{7}
\end{equation*}
$$

which entails that the angle between X and Y is t. Finally, we conclude that:

$$
\exp (t A)=I+\sin (t) A+(1-\cos (t)) A^{2}
$$

is the ccw rotation carrying \mathbf{R}^{3} to itself, for which the axis of rotation is the line $\mathbf{R} N$ passing through the origin O and for which the angle of rotation is t.

