MATHEMATICS 211

ASSIGNMENT 4

Due: October 1, 2014
01° Let L be the linear mapping carrying \mathbf{R}^{3} to \mathbf{R}^{2} for which the matrix relative to the standard bases:

$$
\binom{1}{0},\binom{0}{1} \quad \text { and } \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

for \mathbf{R}^{3} and \mathbf{R}^{2}, respectively, stands as follows:

$$
L=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)
$$

Find the nullspace $\mathcal{N}(L)$ for L, composed of all vectors X :

$$
X=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

in \mathbf{R}^{3} for which:

$$
L(X)=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\binom{0}{0}
$$

Show that, in fact, $\mathcal{N}(L)$ is a line in \mathbf{R}^{3} passing through the origin. Find the rangespace $\mathcal{R}(L)$ for L, composed of all vectors Y :

$$
Y=\binom{p}{q}
$$

in \mathbf{R}^{2} for which there exists a vector X :
in \mathbf{R}^{3} such that:

$$
X=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

$$
L(X)=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\binom{p}{q}=Y
$$

Show that, in fact, $\mathcal{R}(L)=\mathbf{R}^{2}$.
[We find that if X lies in $\mathcal{N}(L)$ and if $w=1$ then u and v must be -2 and -1 , respectively. Hence, X must stand in the form:

$$
X=t\left(\begin{array}{r}
-2 \\
-1 \\
1
\end{array}\right)
$$

where t is any number. Now we search for vectors A and B in \mathbf{R}^{3} such that:

$$
L(A)=E_{1}=\binom{1}{0} \quad \text { and } \quad L(B)=E_{2}=\binom{0}{1}
$$

Succeeding, we would find that, for any vector Y in \mathbf{R}^{2} :

$$
L(p A+q B)=\binom{p}{q}=Y
$$

Consequently, $\mathbf{R}(L)=\mathbf{R}^{2}$. We may find such vectors A and B by straightforward elimination.]
02° Let L be the mapping carrying \mathbf{R}^{2} to \mathbf{R}^{3}, defined as follows:

$$
L\left(\binom{s}{t}\right)=(s-t)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+(s+t)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

where s and t are any real numbers. Note that L a linear mapping. Find the matrix:

$$
\left(\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right)
$$

which defines L.
[We produce the columns of the required matrix as follows:

$$
L\left(E_{1}\right)=L\left(\binom{1}{0}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad L\left(E_{2}\right)=L\left(\binom{0}{1}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)\right.\right.
$$

]
03° Calculate the determinant of the following matrix:

$$
\left(\begin{array}{rrrr}
-1 & 3 & 2 & 1 \\
2 & -3 & 1 & -1 \\
0 & 1 & 2 & 2 \\
4 & 1 & 1 & -1
\end{array}\right)
$$

To that end, apply the characteristic properties of determinants.
[Mathematica says -62.]
04° Calculate the determinant of the following rook placement matrix:

$$
\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

[We must interchange columns three times to obtain the identity matrix, so the determinate is -1]
05° Let L be the linear mapping carrying \mathbf{R}^{2} to \mathbf{R}^{2}, defined by the following matrix, having 2 rows and 2 columns:

$$
L=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

where a, b, c, and d are any real numbers. Let A be the subset of \mathbf{R}^{2} consisting of all vectors:

$$
X=\binom{u}{v}
$$

for which $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Let B be the image of A under L, consisting of all vectors:

$$
Y=\binom{p}{q}
$$

in \mathbf{R}^{2} for which there is some vector X :

$$
X=\binom{u}{v}
$$

in A such that:

$$
L(X)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{u}{v}=\binom{p}{q}=Y
$$

Show that the area of B equals:

$$
|a d-b c|=|\operatorname{det}(L)|
$$

[Of course, B is the parallelogram with vertices at the positions:

$$
\binom{0}{0},\binom{a}{b},\binom{c}{d},\binom{a+c}{b+d}
$$

in \mathbf{R}^{2}. Let us introduce the vectors:

$$
P=\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right), Q=\left(\begin{array}{c}
c \\
d \\
0
\end{array}\right), \quad \text { hence } \quad P \times Q=\left(\begin{array}{c}
0 \\
0 \\
a d-b c
\end{array}\right)
$$

in \mathbf{R}^{3}. Drawing a simple diagram, we find that the area of B equals:

$$
\|P\|\|Q\| \sin (\theta)
$$

where θ is the angle between P and Q. (To that end, we need only "drop the perpendicular.") In turn, we have:

$$
\begin{aligned}
(a d-b c)^{2} & =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2} \\
& \left.=\|P\|^{2}\|Q\|^{2}-《 P, Q\right\rangle^{2} \\
& =\|P\|^{2}\|Q\|^{2}\left(1-\cos ^{2}(\theta)\right) \\
& =\|P\|^{2}\|Q\|^{2} \sin ^{2}(\theta)
\end{aligned}
$$

It follows that the area of B equals $|a d-b c|$.
06° Let a, b, and c be any numbers. Show that:

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right)=(c-b)(c-a)(b-a)
$$

[Applying the basic definition, we find that:

```
det}(\begin{array}{lll}{1}&{a}&{\mp@subsup{a}{}{2}}\\{1}&{b}&{\mp@subsup{b}{}{2}}\\{1}&{c}&{\mp@subsup{c}{}{2}}\end{array})=(b\mp@subsup{c}{}{2}-c\mp@subsup{b}{}{2})-(a\mp@subsup{c}{}{2}-c\mp@subsup{a}{}{2})+(a\mp@subsup{b}{}{2}-b\mp@subsup{a}{}{2})=(c-b)(c-a)(b-a
]
```

07^{\bullet} Let c and d be positive constants. Let E be the subset of \mathbf{R}^{2} composed of all positions:

$$
Z=\binom{x}{y}
$$

in \mathbf{R}^{2} such that:

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=d
$$

In terms of c and d, find the positive constants a and b such that, for any position:

$$
Z=\binom{x}{y}
$$

in \mathbf{R}^{2}, Z lies in E iff:

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

You should express a and b in terms of c and d. One refers to E as an ellipse with focii at:

$$
\binom{-c}{0} \quad \text { and } \quad\binom{c}{0}
$$

Draw a picture of E, displaying the focii and indicating the significance of a and b.
[This problem provides our first introduction to the ellipse.]

