MATHEMATICS 211

ASSIGNMENT 2

Due: September 17, 2014
01° Let ξ :

$$
\xi: \quad x_{1}, x_{2}, x_{3}, \ldots
$$

be a sequence in \mathbf{R}^{2} defined as follows:

$$
x_{j}=\left(\cos \left((2 j-1) \frac{\pi}{4}\right), \sin \left((2 j-1) \frac{\pi}{4}\right)\right)
$$

where j is any positive integer. Show that ξ is not convergent. In turn, describe a subsequence η :

$$
\eta: \quad y_{1}, y_{2}, y_{3}, \ldots
$$

of ξ which is in fact convergent. Of course, there are many.
[The sequence ξ follows a cycle of length 4:

$$
\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(-1,1), \frac{1}{\sqrt{2}}(-1,-1), \frac{1}{\sqrt{2}}(1,-1)
$$

Starting with any one of the four positions, one may produce a (constant) subsequence of ξ by following every fourth term. As there are four such subsequences (and many others), it is plain that ξ itself cannot be convergent. (If it were, then every subsequence of ξ would necessarily converge to the same limit, namely, the limit of ξ.$)]$
02° Let S be the subset of \mathbf{R}^{2} consisting of all positions:

$$
x=(u, v)
$$

such that:

$$
0<u^{2}+v^{2} \leq 1
$$

Show that S is neither open nor closed.
[Obviously, there is a sequence ξ in S which converges to $(0,0)$, namely:

$$
\xi: \quad x_{j}=\left(\frac{1}{j+1}, \frac{1}{j+1}\right) \quad\left(j \in \mathbf{Z}^{+}\right)
$$

Since $(0,0) \notin S$, we infer that S is not closed. Moreover, $(1,0) \notin \operatorname{int}(S)$, because, for each positive number $r, B_{r}((1,0)$ contains positions in the complement of S. We infer that S is not open.]
03° Let T be a subset of \mathbf{R}^{2} such that:

$$
T \neq \emptyset, \quad \mathbf{R}^{2} \backslash T \neq \emptyset
$$

Show that the periphery of T is not empty:

$$
\operatorname{per}(T) \neq \emptyset
$$

[Let us denote $\mathbf{R}^{2} \backslash T$ by \bar{T}. Let x be a position in T and let y be a position in \bar{T}. Let $d=\|x-y\|$. Let A be the subset of $[0, d]$ consisting of all numbers a such that:

$$
x+\frac{a}{d}(y-x) \in T
$$

Obviously, $0 \in A$ and d is an upper bound for A. Consequently, we may introduce the supremum (that is, the least upper bound) for A. Let it be b. Let:

$$
v=x+\frac{b}{d}(y-x)
$$

We will show that $v \in \operatorname{per}(T)$. Let r be any positive number. We must show that:

$$
\begin{equation*}
B_{r}(v) \cap T \neq \emptyset \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
B_{r}(v) \cap \bar{T} \neq \emptyset \tag{2}
\end{equation*}
$$

Clearly, $b-r$ cannot be an upper bound for A, since it is smaller than the least upper bound b. Hence, there must be some c in A such that $b-r<c \leq b$. Let:

$$
u=x+\frac{c}{d}(y-x)
$$

It follows that:

$$
u \in T \quad \text { and } \quad\|u-v\|=|c-b|<r
$$

We infer that (1) holds true. In turn, there must be some c in $(b, d]$ (unless $b=d)$ such that $c \notin A$ and $b \leq c<b+r$. Let:

$$
w=x+\frac{c}{d}(y-x)
$$

It follows that:

$$
w \in \bar{T} \quad \text { and } \quad\|w-v\|=|c-b|<r
$$

We infer that (2) holds true. For the outstanding case in which $b=d$, we simply note that $v \in \bar{T}$, so that, again, (2) holds true.

04• To support the foregoing problem, we supply the following discussion of topology on \mathbf{R}^{n}. Let S be any subset of \mathbf{R}^{n}. Relative to S, we obtain the following partition of \mathbf{R}^{n} :

$$
\mathbf{R}^{n}=\operatorname{int}(S) \cup \operatorname{per}(S) \cup \operatorname{ext}(S)
$$

We refer to $\operatorname{int}(S)$, $\operatorname{per}(S)$, and $\operatorname{ext}(S)$ as the interior, the periphery, and the exterior of S, respectively. They are defined as follows:

$$
\begin{aligned}
\operatorname{int}(S) & =\left\{x \in \mathbf{R}^{n}:(\exists r>0)\left(B_{r}(x) \subseteq S\right\}\right. \\
\operatorname{per} S) & =\left\{x \in \mathbf{R}^{n}:(\forall r>0)\left(B_{r}(x) \cap S \neq \emptyset \wedge B_{r}(x) \cap \mathbf{R}^{n} \backslash S \neq \emptyset\right\}\right. \\
\operatorname{ext}(S) & =\left\{x \in \mathbf{R}^{n}:(\exists r>0)\left(B_{r}(x) \subseteq \mathbf{R}^{n} \backslash S\right\}\right.
\end{aligned}
$$

In the foregoing context, we have applied the common notation $B_{r}(x)$ for the open ball with center x and radius r :

$$
B_{r}(x)=\left\{y \in \mathbf{R}^{n}:\|y-x\|<r\right\}
$$

We define the closure $\operatorname{clo}(S)$ of S to be the union of the interior and the periphery:

$$
\operatorname{clo}(S)=\operatorname{int}(S) \cup \operatorname{per}(S)
$$

Obviously:

$$
\operatorname{int}(S) \subseteq S \subseteq \operatorname{clo}(S)
$$

We say that S is open iff $S=\operatorname{int}(S)$ and that S is closed iff $S=\operatorname{clo}(S)$. At this point, one should test understanding by proving that S is open iff $\mathbf{R}^{n} \backslash S$ is closed. We say that S is bounded iff:

$$
(\exists r>0)\left(S \subseteq B_{r}(0)\right)
$$

Finally, we say that S is compact iff S is closed and bounded.
05^{\bullet} The term topology is a concatenation of the Greek words topos ($\tau о \pi о \sigma$) and logos ($\lambda o \gamma o \sigma$), the former referring to "position" and the latter in general to "word" but in particular to "explanation." The term evolved into the Latin form analysis situs.
06^{\bullet} Let ξ

$$
\xi: \quad x_{1}, x_{2}, x_{3}, \ldots
$$

be a sequence in $\mathbf{R}=\mathbf{R}^{1}$. Show that there must exist a subsequence η :

$$
\eta: \quad y_{1}, y_{2}, y_{3}, \ldots
$$

of ξ such that η is decreasing or η is increasing. To that end, introduce the concept of a "leader." For each positive integer j, one says that j is a "leader" for ξ iff, for each positive integer k, if $j \leq k$ then $x_{k} \leq x_{j}$. Let L be the subset of \mathbf{Z}^{+}consisting of all leaders for ξ. Show that if L is finite then there must be a subsequence η of ξ such that η is increasing, while if L is infinite then there must be a subsequence η of ξ such that η is decreasing.

