EXAMINATION

MATHEMATICS 211

Due: L306, HIGH NOON, FRIDAY, DECEMBER 19, 2014
01° Let T be a regular tetrahedron. Let A and B be two of the vertices of T and let O be its center. Find the angle between the vector X joining O to A and the vector Y joining O to B.
02° Let r, s, u, v, and w be real variables which meet the following conditions:

Show that:

$$
\begin{aligned}
1 & <r \\
s & =(r-1) \exp (r) \\
s & =\frac{1}{4}\left(v^{2}-u^{2}\right) \\
w & =\frac{1}{r} \exp (-r)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial w}{\partial u}=\frac{1}{2}\left(1+\frac{1}{r}\right) u w^{2} \\
& \frac{\partial w}{\partial v}=-\frac{1}{2}\left(1+\frac{1}{r}\right) v w^{2}
\end{aligned}
$$

To do so, first show that:

$$
\frac{d r}{d s}=w
$$

03° Let f be the function defined on the open first octant in \mathbf{R}^{3}, as follows:

$$
f(x, y, z) \equiv x^{1 / 2}+y^{1 / 2}+z^{1 / 2} \quad(0<x, 0<y, 0<z)
$$

Let d be any positive real number and let S be the surface in \mathbf{R}^{3} defined by the condition:

$$
f(x, y, z)=d^{1 / 2}
$$

Let (x, y, z) be any point in S and let Π be the tangent plane to S at (x, y, z). Let:

$$
(p, 0,0), \quad(0, q, 0), \quad(0,0, r)
$$

be the points on the coordinate axes which lie in Π. Show that:

$$
p+q+r=d
$$

04° Let a, b, and c be any positive real numbers. Let f be the function defined on the open first quadrant in \mathbf{R}^{2}, as follows:

$$
f(x, y) \equiv \frac{a}{x}+b x y+\frac{c}{y} \quad(0<x, 0<y)
$$

Show that there is precisely one critical point for f. Show that the critical point is a local minimum. Is it a global minimum?
05° Let a, b, and c be positive numbers and let u, v, w, and d be any numbers for which $u^{2}+v^{2}+w^{2} \neq 0$. Find the minimum distance between the ellipsoid E:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

and the plane P :

$$
u x+v y+w z=d
$$

Of course, the answer will depend on the given parameters. Be wary of degenerate cases.
06° Let C be the curve in \mathbf{R}^{3}, parametrized by the mapping Γ defined as follows:

$$
\Gamma(t) \equiv(\cosh (t), 0, \sinh (t)) \quad(t \in \mathbf{R})
$$

Let S be the surface in \mathbf{R}^{3}, parametrized by the mapping H defined as follows:

$$
H(u, v) \equiv(\cosh (u) \cos (v), \cosh (u) \sin (v), \sinh (u)) \quad(u \in \mathbf{R},-\pi<v<\pi)
$$

Draw a diagram to show that one may regard S as the surface of revolution defined by the profile curve C. Find the curvature $\kappa(u, v)$ of S at the position $H(u, v)$. Why is the curvature independent of v ?
07° Let a, b, and c be any positive numbers. Let S be the subset of \mathbf{R}^{3} consisting of all points (x, y, z) such that:

$$
0<x, 0<y, 0<z, x^{a} y^{b} z^{c}=1
$$

Let f be the function defined on S as follows:

$$
f(x, y, z) \equiv \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \quad((x, y, z) \in S)
$$

Show that there is a point (u, v, w) in S at which f achieves its minimum value. Find such a point and compute the minimum value of f.
08° Let a, b, and c be real numbers for which $a^{2}+b^{2}+c^{2}=1$. Let A be the antisymmetric matrix defined as follows

$$
A=\left(\begin{array}{rrr}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

Recall that:

$$
\exp (t A)=I+\sin (t) A+(1-\cos (t)) A^{2}
$$

Verify that:

$$
\frac{d}{d t} \exp (t A)=A \exp (t A)
$$

