MATHEMATICS 211

ASSIGNMENT 10

Due: November 19, 2014
01° Review the description of the Sinusoidal Map T in the previous assignment. Calculate the First Fundamental Form G for T :

$$
G=\left(\begin{array}{ll}
T_{u} \bullet T_{u} & T_{u} \bullet T_{v} \\
T_{v} \bullet T_{u} & T_{v} \bullet T_{v}
\end{array}\right)
$$

Show that:

$$
\operatorname{det} G=1
$$

Eventually, we will find that the foregoing condition implies that T preserves equal areas.
02° Calculate the curvature of the unit sphere \mathbf{S}^{2} using the stereographic coordinate map S :

$$
S(u, v)=(x, y, z)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) \quad\left((u, v) \in \mathbf{R}^{2}\right)
$$

03° Calculate the curvature of the northern hemisphere of the unit sphere \mathbf{S}^{2} using the following coordinate map E :

$$
E(u, v)=(x, y, z)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right) \quad\left(u^{2}+v^{2}<1\right)
$$

04° Let J be any open interval in \mathbf{R}. Let f and g be real-valued functions defined on J for which:

$$
0<f(t), \quad \text { and } \quad f^{\prime}(t)^{2}+g^{\prime}(t)^{2}=1
$$

where t is any number in J. Note that:

$$
f^{\prime}(t) f^{\prime \prime}(t)+g^{\prime}(t) g^{\prime \prime}(t)=0
$$

Let K be the open interval $(-\pi, \pi)$ in \mathbf{R}. Let H be the mapping carrying $J \times K$ to \mathbf{R}^{3}, defined as follows:

$$
H(u, v)=(x, y, z)=(f(u) \cos (v), f(u) \sin (v), g(u))
$$

where (u, v) is any ordered pair in $J \times K$. Let S be the surface in \mathbf{R}^{3} parametrized by H :

$$
S=H(J \times K)
$$

Show that, for any ordered pair (u, v) in $J \times K$, the curvature $\kappa(u, v)$ of S at $H(u, v)$ has the form:

$$
\kappa(u, v)=-\frac{f^{\prime \prime}(u)}{f(u)}
$$

Now let $J=\mathbf{R}^{+}$. Design f and g so that, for any ordered pair (u, v) in $\mathbf{R}^{+} \times \mathbf{R}^{+}$:

$$
\kappa(u, v)=-1
$$

To that end, introduce:

$$
f(t)=\exp (-t)
$$

where t is any positive number. Then find a suitable function g. Sketch the graph of the corresponding surface S.

