MATHEMATICS 211

ASSIGNMENT 8

Due: November 5, 2014
01° Let ρ, α, and β be positive numbers for which:

$$
\alpha \sqrt{\rho^{2}+\beta^{2}}=1
$$

Let Γ be the curve in \mathbf{R}^{3} defined as follows:

$$
\Gamma(s)=(\rho \cos (\alpha s), \rho \sin (\alpha s), \alpha \beta s)
$$

where s is any number. Verify that:

$$
\left\|\Gamma^{\prime}(s)\right\|=1
$$

where s is any number. Hence, s is the arc-length parameter. Let T, N, and B be the tangent, normal, and binormal vectors for Γ, respectively, defined as follows:

$$
\begin{aligned}
T(s) & =\Gamma^{\prime}(s) \\
N(s) & =\frac{1}{\left\|T^{\prime}(s)\right\|} T^{\prime}(s) \\
B(s) & =T(s) \times N(s)
\end{aligned}
$$

where s is any number. By the Serret/Frenet formulae, we have:

$$
\begin{aligned}
& T^{\prime}(s)=\kappa(s) N(s) \\
& B^{\prime}(s)=-\tau(s) N(s)
\end{aligned}
$$

where s is any number and where $\kappa(s)=\left\|T^{\prime}(s)\right\|$ and $\tau(s)$ are the curvature and torsion, respectively, for Γ at $\Gamma(s)$. Calculate $\kappa(s)$ and $\tau(s)$. By explicit calculation, verify that:

$$
N^{\prime}(s)=-\kappa(s) T(s)+\tau(s) B(s)
$$

where s is any number.
02° Let Γ be the curve in \mathbf{R}^{3} defined as follows:

$$
\Gamma(s)=\left(\frac{\sqrt{1+s^{2}}}{\sqrt{5}}, \frac{2 s}{\sqrt{5}}, \frac{\log \left(s+\sqrt{1+s^{2}}\right)}{\sqrt{5}}\right)
$$

where s is any number. Repeat the steps in the foregoing problem.
03° For a curve parametrized by arclength, the formulas of Frenet stand as follows:

$$
\begin{array}{ll}
T^{\prime}= & \kappa N \\
N^{\prime}= & -\kappa T \\
B^{\prime}= & -\tau N
\end{array}
$$

Let:

$$
A=\tau T+\kappa B
$$

Show that:

$$
\begin{aligned}
T^{\prime} & =A \times T \\
N^{\prime} & =A \times N \\
B^{\prime} & =A \times B
\end{aligned}
$$

04° Let a be a positive number. The Curve of Viviani traces (part of) the intersection of the cylinder:

$$
(x-a)^{2}+y^{2}=a^{2}
$$

and the sphere:

$$
x^{2}+y^{2}+z^{2}=(2 a)^{2}
$$

in \mathbf{R}^{3}. One may parametrize the curve as follows:

$$
\Gamma(t)=\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=a\left(\begin{array}{c}
1+\cos (t) \\
\sin (t) \\
2 \sin (t / 2)
\end{array}\right) \quad(0 \leq t \leq \pi)
$$

Note that the parameter t is not the arclength parameter. Find the curvature κ and the torsion τ of the Curve of Viviani. To do so, you may (if you wish) apply the following general formulas:

$$
\begin{gathered}
\kappa(t)=\frac{1}{\left\|\Gamma^{\prime}(t)\right\|^{3}}\left\|\Gamma^{\prime}(t) \times \Gamma^{\prime \prime}(t)\right\| \\
\tau(t)=\frac{1}{\left\|\Gamma^{\prime}(t) \times \Gamma^{\prime \prime}(t)\right\|^{2}}\left(\Gamma^{\prime}(t) \times \Gamma^{\prime \prime}(t)\right) \bullet \Gamma^{\prime \prime \prime}(t)
\end{gathered}
$$

