MATHEMATICS 211

ASSIGNMENT 7

Due: October 29, 2014
01° Let f be the function defined as follows:

$$
f(x, y)=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}+\left(x-\frac{3}{2}\right)^{2}-(y+4)^{2}
$$

where (x, y) is any point in \mathbf{R}^{2}. Find the critical points for f. That is, find the points (a, b) for which:

$$
f_{x}(a, b)=0, \quad f_{y}(a, b)=0
$$

For each such point (a, b), determine whether it is a local minimum point, a saddle point, or a local maximum point. Of course, a priori, it might be none of the three.
02° Let f be the function defined as follows:

$$
f(x, y)=x y\left(4 x^{2}+y^{2}-16\right)
$$

where (x, y) is any point in \mathbf{R}^{2} for which:

$$
0 \leq x, \quad 0 \leq y, \quad 4 x^{2}+y^{2} \leq 16
$$

Find the global minimum and maximum values for f.
03° Let f be the function defined as follows:

$$
f(x, y)=6 x y^{2}-2 x^{3}-3 y^{4}
$$

where (x, y) is any point in \mathbf{R}^{2}. Find the three critical points for f. For each such point (a, b), determine whether it is a local minimum point, a saddle point, or a local maximum point. For one of the points, you will need to exercise ingenuity.
04° Show that, among all triangles inscribed in a given circle, the equilateral triangles have the greatest perimeter.

