MATHEMATICS 211

ASSIGNMENT 5

Due: October 8, 2014
01° Let A be an antisymmetric matrix:

$$
A=\left(\begin{array}{rrr}
0 & -w & v \\
w & 0 & -u \\
-v & u & 0
\end{array}\right)
$$

Compute the determinant of A.
02° Let a be a real number, distinct from 0 . Let f be the mapping carrying $\mathbf{R}^{3} \backslash\{0\}$ to $\mathbf{R}=\mathbf{R}^{1}$, defined as follows:

$$
f(x, y, z):=\left(x^{2}+y^{2}+z^{2}\right)^{a}
$$

Find the value(s) of a for which:

$$
f_{x x}(x, y, z)+f_{y y}(x, y, z)+f_{z z}(x, y, z)=0
$$

03° Consider the following curve in \mathbf{R}^{3} :

$$
\Gamma(t):=(\exp (t) \cos (t), \exp (t) \sin (t), t)
$$

where t is any real number (soit time). Find the angle between the position vector $\Gamma(t)$ and the velocity vector $\Gamma^{\prime}(t)$ at time $t=\pi / 4$.
04° Let f be the real valued function defined on \mathbf{R}^{3} as follows:

$$
f(x, y, z)=z-\left(x^{2}+y^{2}\right) \quad\left((x, y, z) \in \mathbf{R}^{3}\right)
$$

Let M be the level set in \mathbf{R}^{3} defined by the relation:

$$
f(x, y, z)=0
$$

Clearly, the (position) vector $(1,2,5)$ lies in M. The tangent plane $T_{(1,2,5)}(M)$ to M at $(1,2,5)$ consists of the vectors (u, v, w) in \mathbf{R}^{3} which meet the condition:

$$
\left(f_{x}(1,2,5), f_{y}(1,2,5), f_{z}(1,2,5)\right) \bullet(u, v, w)=d
$$

where d is a suitable number. Find d.
05° Let F be the mapping carrying \mathbf{R}^{2} to \mathbf{R}^{3} defined by the following relations:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=F\left(\binom{u}{v}\right): \begin{aligned}
& x=u \\
& y=v \\
& z=u^{2}+v^{2}
\end{aligned}
$$

Let M be the range of F. Describe the tangent plane:

$$
T_{P}(M)
$$

to M at the point:

$$
P=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)=F\left(\binom{1}{2}\right)
$$

By definition, the vectors in $T_{P}(M)$ have the form:

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)+\left(\begin{array}{ll}
\circ & \bullet \\
\circ & \bullet \\
\circ & \bullet
\end{array}\right)\binom{u-1}{v-2}
$$

where:

$$
\left(\begin{array}{cc}
\circ & \bullet \\
\circ & \bullet \\
\circ & \bullet
\end{array}\right)=D F\left(\binom{1}{2}\right)
$$

and where:

$$
\binom{u}{v}
$$

runs through all vectors in \mathbf{R}^{2}. Find a vector:

$$
N=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

which is perpendicular to $T_{P}(M)$. In fact, you can take N to be:

$$
\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right)
$$

Draw a diagram to illustrate the sense of this problem.
06° Let H be the Hipparchus Map:

$$
H\binom{\phi}{\theta}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\cos \theta \cos \phi \\
\cos \theta \sin \phi \\
\sin \theta
\end{array}\right)
$$

where ϕ is the longitude and θ is the latitude. In the following picture of the range \mathbf{S}^{2} of H :

plot the vector:

$$
V=H\binom{\pi / 4}{\pi / 6}+D H\binom{\pi / 4}{\pi / 6}\binom{1}{1}
$$

Be ye exact.
07° Let a and b be any numbers for which $0<b<a$. Let c be the positive number which satisfies the relation: $b^{2}+c^{2}=a^{2}$. Let f be the function defined on \mathbf{R}^{2} as follows:

$$
f(x, y)=\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}
$$

Let (p, q) be any member of \mathbf{R}^{2} for which $f(p, q)=1$. [The set of all such members (p, q) compose an ellipse in \mathbf{R}^{2}. We will make a drawing of it in the lectures.] Let α be the angle between the vectors:

$$
(p, q)-(-c, 0) \quad \text { and } \quad\left(f_{x}(p, q), f_{y}(p, q)\right)
$$

and let β be the angle between the vectors:

$$
(p, q)-(+c, 0) \quad \text { and } \quad\left(f_{x}(p, q), f_{y}(p, q)\right)
$$

Show that $\alpha=\beta$. This result explains the phenomenon of the Whispering Gallery.
08^{\bullet} Find the equation of the tangent plane for the surface:

$$
S: \quad \sqrt{x}+\sqrt{y}+\sqrt{z}=4 \quad(0<x, 0<y, 0<z)
$$

at the point $(1,4,1)$.

