MATHEMATICS 211 ASSIGNMENT 4 Due: October 1, 2014

01° Let L be the linear mapping carrying \mathbb{R}^3 to \mathbb{R}^2 for which the matrix relative to the standard bases:

$$\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

for \mathbf{R}^3 and \mathbf{R}^2 , respectively, stands as follows:

$$L = \begin{pmatrix} -1 & 12 & 10\\ 6 & 6 & 18 \end{pmatrix}$$

Find the *nullspace* $\mathcal{N}(L)$ for L, composed of all vectors X:

$$X = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

in \mathbf{R}^3 for which:

$$L(X) = \begin{pmatrix} -1 & 12 & 10 \\ 6 & 6 & 18 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Show that, in fact, $\mathcal{N}(L)$ is a line in \mathbb{R}^3 passing through the origin. Find the rangespace $\mathcal{R}(L)$ for L, composed of all vectors Y:

$$Y = \begin{pmatrix} p \\ q \end{pmatrix}$$

in \mathbf{R}^2 for which there exists a vector X:

$$X = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

in \mathbf{R}^3 such that:

$$L(X) = \begin{pmatrix} -1 & 12 & 10 \\ 6 & 6 & 18 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} = Y$$

Show that, in fact, $\mathcal{R}(L) = \mathbf{R}^2$.

 02° Let L be the mapping carrying \mathbf{R}^2 to \mathbf{R}^3 , defined as follows:

$$L\begin{pmatrix} s\\t \end{pmatrix} = (s-t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} + (s+t) \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

where s and t are any real numbers. Note that L a linear mapping. Find the matrix:

$$\begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix}$$

which defines L.

 $03^\circ~$ Calculate the determinant of the following matrix:

$$\begin{pmatrix} -1 & 3 & 2 & 1 \\ 2 & -3 & 1 & -1 \\ 0 & 1 & 2 & 2 \\ 4 & 1 & 1 & -1 \end{pmatrix}$$

To that end, apply the characteristic properties of determinants.

 $04^\circ~$ Calculate the determinant of the following rook placement matrix:

/0	0	1	0	0	0 \
0	0	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	0	1
1	0	0	0	0	0
0	1	0	0	0	0
0	0	0 0 0	0	1	0
$\setminus 0$	0	0	1	0	0/

 05° Let L be the linear mapping carrying \mathbb{R}^2 to \mathbb{R}^2 , defined by the following matrix, having 2 rows and 2 columns:

$$L = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

where a, b, c, and d are any real numbers. Let A be the subset of \mathbb{R}^2 consisting of all vectors:

$$X = \begin{pmatrix} u \\ v \end{pmatrix}$$

for which $0 \le u \le 1$ and $0 \le v \le 1$. Let B be the image of A under L, consisting of all vectors:

$$Y = \begin{pmatrix} p \\ q \end{pmatrix}$$

in \mathbf{R}^2 for which there is some vector X:

$$X = \begin{pmatrix} u \\ v \end{pmatrix}$$

in A such that:

$$L(X) = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} = Y$$

Show that the area of B equals:

$$|ad - bc| = |det(L)|$$

 06° Let a, b, and c be any numbers. Show that:

$$det \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} = (c-b)(c-a)(b-a)$$

07° Let c and d be positive constants. Let E be the subset of \mathbb{R}^2 composed of all positions:

$$Z = \begin{pmatrix} x \\ y \end{pmatrix}$$

in \mathbf{R}^2 such that:

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = d$$

In terms of c and d, find the positive constants a and b such that, for any position:

$$Z = \begin{pmatrix} x \\ y \end{pmatrix}$$

in \mathbf{R}^2 , Z lies in E iff:

$$(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$$

You should express a and b in terms of c and d. One refers to E as an *ellipse* with *focii* at:

$$\begin{pmatrix} -c \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} c \\ 0 \end{pmatrix}$

Draw a picture of E, displaying the focii and indicating the significance of a and b.