MATHEMATICS 211

ASSIGNMENT 4

Due: October 1, 2014
01° Let L be the linear mapping carrying \mathbf{R}^{3} to \mathbf{R}^{2} for which the matrix relative to the standard bases:

$$
\binom{1}{0},\binom{0}{1} \quad \text { and } \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

for \mathbf{R}^{3} and \mathbf{R}^{2}, respectively, stands as follows:

$$
L=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)
$$

Find the nullspace $\mathcal{N}(L)$ for L, composed of all vectors X :

$$
X=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

in \mathbf{R}^{3} for which:

$$
L(X)=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\binom{0}{0}
$$

Show that, in fact, $\mathcal{N}(L)$ is a line in \mathbf{R}^{3} passing through the origin. Find the rangespace $\mathcal{R}(L)$ for L, composed of all vectors Y :

$$
Y=\binom{p}{q}
$$

in \mathbf{R}^{2} for which there exists a vector X :
in \mathbf{R}^{3} such that:

$$
X=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)
$$

$$
L(X)=\left(\begin{array}{rrr}
-1 & 12 & 10 \\
6 & 6 & 18
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\binom{p}{q}=Y
$$

Show that, in fact, $\mathcal{R}(L)=\mathbf{R}^{2}$.
02° Let L be the mapping carrying \mathbf{R}^{2} to \mathbf{R}^{3}, defined as follows:

$$
L\left(\binom{s}{t}\right)=(s-t)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+(s+t)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

where s and t are any real numbers. Note that L a linear mapping. Find the matrix:

$$
\left(\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right)
$$

which defines L.
03° Calculate the determinant of the following matrix:

$$
\left(\begin{array}{rrrr}
-1 & 3 & 2 & 1 \\
2 & -3 & 1 & -1 \\
0 & 1 & 2 & 2 \\
4 & 1 & 1 & -1
\end{array}\right)
$$

To that end, apply the characteristic properties of determinants.
04° Calculate the determinant of the following rook placement matrix:

$$
\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

05° Let L be the linear mapping carrying \mathbf{R}^{2} to \mathbf{R}^{2}, defined by the following matrix, having 2 rows and 2 columns:

$$
L=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

where a, b, c, and d are any real numbers. Let A be the subset of \mathbf{R}^{2} consisting of all vectors:

$$
X=\binom{u}{v}
$$

for which $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Let B be the image of A under L, consisting of all vectors:

$$
Y=\binom{p}{q}
$$

in \mathbf{R}^{2} for which there is some vector X :

$$
X=\binom{u}{v}
$$

in A such that:

$$
L(X)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{u}{v}=\binom{p}{q}=Y
$$

Show that the area of B equals:

$$
|a d-b c|=|\operatorname{det}(L)|
$$

06° Let a, b, and c be any numbers. Show that:

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right)=(c-b)(c-a)(b-a)
$$

07^{\bullet} Let c and d be positive constants. Let E be the subset of \mathbf{R}^{2} composed of all positions:

$$
Z=\binom{x}{y}
$$

in \mathbf{R}^{2} such that:

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=d
$$

In terms of c and d, find the positive constants a and b such that, for any position:

$$
Z=\binom{x}{y}
$$

in \mathbf{R}^{2}, Z lies in E iff:

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

You should express a and b in terms of c and d. One refers to E as an ellipse with focii at:

$$
\binom{-c}{0} \quad \text { and } \quad\binom{c}{0}
$$

Draw a picture of E, displaying the focii and indicating the significance of a and b.

