MATHEMATICS 211

ASSIGNMENT 3

Due: September 24, 2014
01° Let J be an open interval in \mathbf{R}. Let f, g, and h be differentiable functions defined on J with values in \mathbf{R}, for which:

$$
\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right) \times\left(\begin{array}{c}
f^{\prime}(t) \\
g^{\prime}(t) \\
h^{\prime}(t)
\end{array}\right) \neq\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \quad(t \in J)
$$

Let Γ be the corresponding mapping carrying J to \mathbf{R}^{3}, with components f, g, and h :

$$
\Gamma(t) \equiv\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right) \quad(t \in J)
$$

Let Γ satisfy the Equation of Newton:

$$
\Gamma^{\prime \prime}(t) \equiv\left(\begin{array}{c}
f^{\prime \prime}(t) \\
g^{\prime \prime}(t) \\
h^{\prime \prime}(t)
\end{array}\right)=-\frac{1}{\|\Gamma(t)\|^{3}} \Gamma(t) \quad(t \in J)
$$

Show that the range of Γ is included in a plane. To that end, compute the derivative of:

$$
\Delta(t)=\Gamma^{\prime}(t) \times \Gamma(t)
$$

02° Let X and Y be nonempty closed subsets of \mathbf{R}^{2} for which $X \cap Y=\emptyset$. Let d be the distance between X and Y, defined as follows:

$$
d=\inf \{\|x-y\|: x \in X, y \in Y\}
$$

Show by example that d may be 0 (even though X and Y have no point(s) in common). For contrast, show that if X or Y is compact then d is in fact positive.
03° Let P be the subset of \mathbf{R}^{2} consisting of all positions:

$$
\binom{x}{y}
$$

for which $y=x^{2}$. Let τ be the position:

$$
\tau=\binom{2}{-1}
$$

in \mathbf{R}^{2}. Find the distance between P and $\{\tau\}$.
04^{\bullet} Let \mathbf{S}^{2} be the unit sphere in \mathbf{R}^{3}, consisting of all positions:

$$
x=\left(x_{1}, x_{2}, x_{3}\right)
$$

for which:

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1
$$

Let a, b, c, and d be any four positions:

$$
\begin{aligned}
& a=\left(a_{1}, a_{2}, a_{3}\right) \\
& b=\left(b_{1}, b_{2}, b_{3}\right) \\
& c=\left(c_{1}, c_{2}, c_{3}\right) \\
& d=\left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

in \mathbf{S}^{2} for which:

$$
\begin{equation*}
a \neq b, a \neq c, a \neq d, b \neq c, b \neq d, c \neq d \tag{*}
\end{equation*}
$$

Let f be the function of the foregoing four positions, defined as follows:

$$
f(a, b, c, d)=\frac{1}{\|a-b\|}+\frac{1}{\|a-c\|}+\frac{1}{\|a-d\|}+\frac{1}{\|b-c\|}+\frac{1}{\|b-d\|}+\frac{1}{\|c-d\|}
$$

Of course, the domain of f would be the subset $\boldsymbol{\Sigma}$ of:

$$
\mathbf{R}^{3} \times \mathbf{R}^{3} \times \mathbf{R}^{3} \times \mathbf{R}^{3}=\mathbf{R}^{12}
$$

consisting of all quadruples:

$$
(a, b, c, d)
$$

of positions in \mathbf{S}^{2} which satisfy condition $(*)$. Show that the range of f has the form:

$$
[\ell, \longrightarrow)
$$

where ℓ is a suitable positive (!) real number. We mean to say that ℓ is the minimum value of f but that the values of f are arbitrarily large. Guess the form of the various quadruples (a, b, c, d) in $\boldsymbol{\Sigma}$ for which:

$$
f(a, b, c, d)=\ell
$$

Start by guessing the "shape" of such quadruples.
05^{\bullet} Reduce the foregoing problem to pairs and triple of positions in \mathbf{S}^{2}. Then generalize the foregoing problem to k-tuples of positions in \mathbf{S}^{2}, where k is any positive integer $(2 \leq k)$.

