WAVE EQUATION 1

Thomas Wieting

The Wave Equation in One Dimension

1° We plan to solve the Wave Equation:

(o)
$$w_{tt}(t,x) - w_{xx}(t,x) = 0$$
 $((t,x) \in \mathbf{R}^2)$

subject to the Initial Conditions:

$$\begin{aligned} w(0,x) &= f(x) \\ w_t(0,x) &= g(x) \end{aligned} \qquad (x \in \mathbf{R})$$

Of course, f and g are complex valued functions defined on \mathbf{R} , given in advance, and w is the complex valued function defined on \mathbf{R}^2 , required to be found.

D'Alembert

 2° To that end, let us apply the Method of D'Alembert. Later, we will apply the Method of Fourier. We introduce the change of variables:

$$\begin{array}{ll} \tau \equiv x + t \\ \xi \equiv x - t \end{array} \implies \ \omega(\tau, \xi) \equiv w(t, x)$$

Now the Wave Equation takes the form:

(o)
$$\omega_{\tau\xi}(\tau,\xi) = 0 \quad ((\tau,\xi) \in \mathbf{R}^2)$$

Clearly, there must exist functions ϕ and ψ such that:

$$\omega(\tau,\xi) = \phi(\tau) + \psi(\xi)$$

Of course, we may replace ϕ and ψ by $\phi+c$ and $\psi-c$, where c is any constant. In any case:

$$w(t,x) = \phi(x+t) + \psi(x-t)$$

Now the Initial Conditions take the form:

$$\phi(x) + \psi(x) = f(x)$$

$$\phi'(x) - \psi'(x) = g(x)$$

Choosing c properly, we find that:

$$\phi(x) + \psi(x) = f(x)$$
$$\phi(x) - \psi(x) = \int_0^x g(y)dy$$

Hence:

$$\phi(x) = \frac{1}{2} \left[f(x) + \int_0^x g(y) dy \right]$$
$$\psi(x) = \frac{1}{2} \left[f(x) - \int_0^x g(y) dy \right]$$

Finally:

(*)
$$w(t,x) = \frac{1}{2} \left[f(x+t) + f(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} g(y) dy$$

Fourier

 3° $\,$ Now let us apply the Method of Fourier. We pass to the Fourier Transform of w:

$$\hat{w}(t,y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} w(t,x)e^{-ixy}dx$$
$$w(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \hat{w}(t,y)e^{+ixy}dy$$

We find the following reformation of equations (\circ) and (\bullet) :

(o)
$$\hat{w}_{tt}(t,y) + y^2 \hat{w}(t,y) = 0$$
 $((t,y) \in \mathbf{R}^2)$

$$\hat{w}(0,y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} f(x)e^{-ixy}dx$$

$$\hat{w}_t(0,y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} g(x)e^{-ixy}dx$$

Now \hat{w} must take the form:

$$\hat{w}(t,y) = a(y)e^{-iyt} + b(y)e^{+iyt} \qquad ((t,v) \in \mathbf{R}^2)$$

where:

$$a(y) + b(y) = \hat{w}(0, y)$$

$$a(y) - b(y) = \frac{i}{y}\hat{w}_t(0, y)$$

so that:

$$a(y) = \frac{1}{2}(\hat{w}(0, y) + \frac{i}{y}\hat{w}_t(0, y))$$
$$b(y) = \frac{1}{2}(\hat{w}(0, y) - \frac{i}{y}\hat{w}_t(0, y))$$

 4° We attempt to recover w from \hat{w} :

$$\begin{split} & w(t,x) \\ &= \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \hat{w}(t,y) e^{+ixy} dy \\ &= \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} (a(y) e^{-iyt} + b(y) e^{+iyt}) e^{+ixy} dy \\ &= \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \left[\hat{w}(0,y) (e^{i(x-t)y} + e^{i(x+t)y}) + \frac{i}{y} \hat{w}_t(0,y) (e^{i(x-t)y} - e^{i(x+t)y}) \right] dy \end{split}$$

 5° To complete the recovery, we note that:

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \hat{w}(0, y) (e^{i(x-t)y} + e^{i(x+t)y}) dy = f(x-t) + f(x+t)$$

In turn, we introduce the function:

$$v(\xi) \equiv -\frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \frac{i}{y} \hat{w}_t(0, y) e^{+i\xi y} dy$$

Obviously:

$$v'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \hat{w}_t(0, y) e^{+i\xi y} dy = g(\xi)$$

Consequently:

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \frac{i}{y} \hat{w}_t(0, y) (e^{i(x-t)y} - e^{i(x+t)y}) dy = \int_{x-t}^{x+t} g(\xi) d\xi$$

Finally:

(*)
$$w(t,x) = \frac{1}{2}(f(x-t) + f(x+t)) + \frac{1}{2} \int_{x-t}^{x+t} g(\xi)d\xi$$

The result is consistent with that obtained by the (foregoing, much simpler) Method of D'Alembert.