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1 Verify/Prove

1• a2 + b2 = c2

2• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .

3• 20216 = 2·10108 = 2·2·5054 = 2·2·2·2527 = 2·2·2·7·361 = 2·2·2·7·19·19
= 23305071110130170192

4•
√

2

2 Turing Machines

5◦ N, N×N, N×N×N, . . .

6◦ We define Turing Machines by means of Tables. The tables are Programs
of Instructions. For examples:

(Z)

◦ •
S1 •S2R ◦S1R
S2 ◦S2L

(Σ)

◦ •
S1 •S2L •S1L
S2 ◦S2R
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and:

(P2,3)

◦ •
S1 ◦S2R ◦S1R
S2 ◦S3R •S2R
S3 ◦S4L ◦S3R
S4 ◦S4L •S5L
S5 ◦S6R •S5L
S6

For each of these machines, the Symbols are ◦ and •. Let us call them the
Blank and the Mark. For the first two machines, the states are S1 and S2; for
the third machine, S1, S2, S3, S4, S5, and S6. Let us call S1 the Start State.

7◦ Turing Machines compute Functions. Let us describe, by examples, how
they do it. We begin with the simple case of the Turing Machine Z. First,
we introduce a Tape comprised of cells, extending indefinitely to the left and
to the right. We fill the cells with blanks:

· · · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
Second, we introduce a Nonnegative Integer x. For instance, let x be 3. We
represent x on the tape by substituting x + 1 successive marks for blanks:

· · · ◦ • • • • ◦ ◦ ◦ · · ·
Third, we set the machine in the start state S1. Fourth, we roll the machine
into position so that it can Read the first of the marks:

· · ·
◦ • • • • ◦ ◦ ◦

S1 · · ·
Now the Turing Machine Z is ready to compute. The machine stands in state
S1 and it reads the symbol •. By its program of instructions, it (erases the
• and) prints the symbol ◦; remains in state S1; and moves one cell to the
Right:

· · ·
◦ ◦ • • • ◦ ◦ ◦

S1 · · ·
Again, the machine stands in state S1 and it reads the symbol •. Of course, it
will repeat the preceding maneuvers. In fact, it will continue to do so until it
stands in state S1 and it reads the symbol ◦. By its program of instructions,
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it then (erases the ◦ and) prints the symbol •; enters state S2; and moves one
cell to the right. Now the Turing Machine stands in state S2 and it reads
the symbol ◦. By its program of instructions, it leaves the symbol ◦ in place;
remains in state S2; and moves one cell to the Left. At this point, the machine
stands in state S2 and it reads the symbol •. By its program of instructions,
it Halts, because the relevant place in the table is empty. Let us display the
entire computation:

· · ·
◦ • • • • ◦ ◦ ◦

S1 · · ·

· · ·
◦ ◦ • • • ◦ ◦ ◦

S1 · · ·

· · ·
◦ ◦ ◦ • • ◦ ◦ ◦

S1 · · ·

· · ·
◦ ◦ ◦ ◦ • ◦ ◦ ◦

S1 · · ·

· · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

S1 · · ·

· · ·
◦ ◦ ◦ ◦ ◦ • ◦ ◦

S2 · · ·

· · ·
◦ ◦ ◦ ◦ ◦ • ◦ ◦

S2 · · ·
In the foregoing computation, the Turing Machine Z acted upon the input
x = 3 to produce the output 0. In fact, for any nonnegative integer x, Z will
act upon the input x to produce the output 0:

Z(x) = 0

We refer to Z as the Zero Turing Machine. It computes the Zero Function,
which we denote by the same symbol Z.

8• Show that, for any nonnegative integer x, the Turing Machine Σ will act
upon the input x to produce the output x + 1:

Σ(x) = x + 1
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For x = 3, the first and last steps of the computation are the following:

· · ·
◦ ◦ • • • • ◦ ◦

S1 · · ·
...

· · ·
◦ • • • • • ◦ ◦

S2 · · ·

We refer to Σ as the Successor Turing Machine. It computes the Successor
Function Σ.

9◦ With reference to the foregoing computations, let us refer to the suc-
cessive steps as Configurations. Obviously, each configuration displays both
the current state of the machine and the symbol under review. Moreover, the
Initial and Terminal Configurations have special forms. For the initial config-
uration, the state of the machine is the start state S1 and the symbol under
review is a mark, the first of a finite sequence of marks embedded in a stream
of blanks. For the terminal configuration, the state of the machine is one of
the states prescribed; the symbol under review is a mark, the first of a finite
sequence of marks embedded in a stream of blanks; and the relevant place in
the table is empty. One can observe the input and the output explicitly in
these special configurations.

10◦ Now let T be any Turing Machine. The symbols are the blank ◦ and the
mark • but the states may be legion:

S1, S2, S3, · · · , Sn

where n is any positive integer. Let x be any nonnegative integer. Let T begin
work in the corresponding initial configuration. Of course, T may halt in a
terminal configuration; it may halt in a configuration other than a terminal
configuration; or it may never halt. In the first of these cases, we declare that
x is a member of the Domain of T and we denote by:

T (x)

the nonnegative integer corresponding to the terminal configuration. In the
second and third of these cases, we declare that x is not a member of the
domain of T . For each x in the domain of T , we refer to T (x) as the Value
assigned to x by T . We may say that the Turing Machine T computes the
Function T .
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11◦ For later reference, let us denote the domain of T by:

dom1(T )

We apply the subscript 1 to emphasize that the function T depends on just
one variable x. See articles 15◦ and 16◦.

12◦ Obviously, for the functions Z and Σ:

dom1(Z) = N = dom1(Σ)

We say that such functions are Total Functions.

13• Show that the following Turing Machine never halts:

(Ω)
◦ •

S1 ◦S1R •S1R

14◦ Turing Machines compute not only Functions of one variable but also
Functions of several variables. Let us describe, by examples, how they do it.
We begin with the simple case of the Turing Machine P(2,3). Let x, y, and z
be any nonnegative integers. For instance, let x be 4, let y be 2, and z be 3.
We set the initial configuration as follows:

· · ·
◦ • • • • • ◦ • • • ◦ • • • • ◦

S1 · · ·

We apply the program of instructions for P(2,3), step by step, to obtain the
terminal configuration:

· · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦

S6 · · ·

Hence:
P(2,3)(4, 2, 3) = 2

In fact, for any nonnegative integers x, y, and z, P(2,3) will act upon the input
(x, y, z) to produce the output y:

P(2,3)(x, y, z) = y

5



We refer to P(2,3) as the (2, 3)-Projection Turing Machine. It computes the
(2, 3)-Projection Function P(2,3).

15◦ Again let T be any Turing Machine. Let k be any positive integer. For
instance, let k be 3. Let:

(x, y, z)

be any 3-tuple of nonnegative integers. Let T begin work in the corresponding
initial configuration. Of course, T may halt in a terminal configuration; it may
halt in a configuration other than a terminal configuration; or it may never
halt. In the first of these cases, we declare that (x, y, z) is a member of the
Domain of T and we denote by:

T (x, y, z)

the nonnegative integer corresponding to the terminal configuration. In the
second and third of these cases, we declare that (x, y, z) is not a member of
the domain of T . For each (x, y, z) in the domain of T , we refer to T (x, y, z)
as the Value assigned to (x, y, z) by T . We may say that the Turing Machine
T computes the Function T .

16◦ For later reference, let us denote the domain of T by:

dom3(T )

We apply the subscript 3 to emphasize that the function T depends on 3
variables x, y, and z.

17◦ Obviously, for the function P(2,3):

dom3(P(2,3)) = N×N×N

We say that such a function is a Total Function.

3 Problems

18• With reference to article 14◦, verify the computation by P(2,3).

19• Design the (1, 5)-Projection Turing Machine P(1,5). Of course:

dom5(P(1,5)) = N×N×N×N×N

and:
P(1,5)(a, b, x, y, z) = a

where (a, b, x, y, z) is any 5-tuple of nonnegative integers.
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20• Explain why the following correspondence between N × N and N is
bijective:

(x, y)⇐⇒ (2x + 1)2y

where x and y are any nonnegative integers.

21• Design a Turing Machine Σ̄ which computes the function:

Σ̄(x) = x + 2

where x is any nonnegative integer. To do so, apply the Turing Machine Σ
twice.

22• Design a Turing Machine A which computes the Addition Function:

A(x, y) = x + y

where x and y are any nonnegative integers.

23• Design a Turing Machine S which computes the Subtraction Function:

S(x, y) =
{

0 if y < x
y − x if x ≤ y

where x and y are any nonnegative integers.

24• Design a Turing Machine M which computes the Multiplication Func-
tion:

M(x, y) = xy

where x and y are any nonnegative integers.

25• Design a Turing Machine E which computes the Exponentiation Func-
tion:

E(x, y) = xy

where x and y are any nonnegative integers.

26• Design Turing Machines Q and R such that:

y = Q(x, y)x + R(x, y) and 0 ≤ R(x, y) < x

where x and y are any nonnegative integers for which 0 < x, while:

Q(0, y) = 0 and R(0, y) = y
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where y is any nonnegative integer. We refer to Q and R as Quotient and
Remainder Turing Machines. They compute the Quotient and Remainder
Functions.

27• Design the Copy Turing Machine C. The following diagram suggests the
purpose of this machine:

· · ·
◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

S1 · · ·
...

· · ·
◦ • • • • ◦ • • • • ◦ ◦

Sn · · ·

28• Design a Turing Machine P which computes the function:

P (x) = x2

where x is any nonnegative integer. To that end, apply the Turing Machines
C and M , described earlier.

29• For the Turing Machine J defined by the following table:

(J)

◦ •
S1 •S3R •S2R
S2 ◦S2R •S1R
S3 ◦S3L

describe the function J of one variable which J computes.

30• For the Turing Machine Π defined by the following table:

(Π)

◦ •
S1 •S4R ◦S2R
S2 •S3R ◦S1R
S3 ◦S3L
S4 •S4L
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describe the function Π of one variable which Π computes. Explain how one
may use this machine to “decide” whether a given nonnegative integer is odd
or even.

31• Design a Turing Machine ∆ which computes the function:

∆(x, y) =
{

0 if x �= y
1 if x = y

where x and y are any nonnegative integers. Explain how one may use the
machine ∆ to “decide” whether or not two given nonnegative integers are
equal.

32• Let T be any Turing Machine. For many purposes, it would be conve-
nient if T carried out its computations of functions without ever moving to
the left of its initial position. In fact, one can arrange for it to be so. Design
a Turing Machine T̂ such that dom1(T̂ ) = dom1(T ); such that, for any non-
negative integer x, if x is contained in the common domain of T̂ and T then
T̂ (x) = T (x); and such that, in the course of computation, T̂ never moves to
the left of its initial position. Do the same for the computation of functions
of any number of variables.

4 Computable Functions

33◦ We know that the functions Z, Σ, the various P(j,k), A, S, M , E, Q,
R, C, P , Π, and ∆ are computable by Turing Machines. Of course, there
are many others. In our Lecture/Discussion, we will suggest that any func-
tion which can be defined from computable functions by one of the following
methods:

(1) Composition
(2) Recursion
(3) Minimization

is itself computable. We will describe these methods by means of examples.
Conversely, we will suggest that any computable function can be defined in
terms of Z, Σ, and the various P(j,k) by some combination of the foregoing
methods.

34◦ In the last section, we will describe the Busy Beaver Function, which,
while fully comprehensible to a rational Being, CANNOT be computed by a
Turing Machine.

5 Gödel Numbers
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35• Let us assign to each Turing Machine T a positive integer |T |. We will
call |T | the Gödel Number of T . We will make sure that distinct Turing Ma-
chines receive distinct Gödel Numbers. Moreover, for any positive integer y,
we will make sure that we can decide by straightforward computation whether
or not y is the Gödel Number of a Turing Machine and, if it is so, that we can
recover from y the Program of Instructions for the machine. We represent the
assignment of Gödel Numbers to Turing Machines schematically as follows:

T −→ y = |T |, y −→ Ty

Specifically, we assign Gödel Numbers to the basic symbols as follows:

◦ ←− 1
• ←− 2
Sj ←− j
L ←− 1
R ←− 2

where j is any positive integer. We assign a Gödel Number to the Turing
Machine Z as follows:

|Z| = 20 32 5272112 131171192 231292311 370410430

= 63818849360591325

We assign a Gödel Number to the Turing Machine Σ as follows:

|Σ| = 20 32 5272111 132171191 231292312 370410430

= 3969593500898025

36◦ We assign a Gödel Number to the Turing Machine P(2,3) as follows:

|P(2,3)|
= 20 36 5172112 131171192 231293312 372412432 471534591 611673712 . . .

In fact:

|P(2,3)|
= 13169372663680644771935573566022000338609438848740992479018888

34051421934901235291341805173074015039321206950281045

37• Explain, step by step, the General Rule for assigning Gödel Numbers
to Turing Machines. For any positive integer y, explain how to decide by
straightforward computation whether or not y is the Gödel Number of a Tur-
ing Machine and, if so, how to recover the Program of Instructions for the
machine.
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6 Universal Turing Machines

38◦ In 1936, A. Turing designed a Turing Machine U such that, for any pair
(x, y) of nonnegative integers, (x, y) is contained in dom2(U) if and only if y
is the Gödel Number of a Turing Machine Ty and x is contained in dom1(Ty),
in which case:

Ty(x) = U(x, y)

We refer to U as a Universal Turing Machine, because U can compute any
computable function (of one variable).

39◦ In general, Turing designed Universal Turing Machines which will com-
pute any computable function of any specified number of variables. These
theoretical designs inspired confidence in the development of modern Com-
puters.

7 The Halting Problem

40◦ Let U be a Universal Turing Machine, as described in article 30◦. Let
∆ = dom2(U). Let us imagine a Turing Machine H such that dom2(H) =
N×N and such that:

H(x, y) =
{

0 if (x, y) /∈ ∆
1 if (x, y) ∈ ∆

where (x, y) is any pair of nonnegative integers. Given such a machine, we
could decide, for any Turing Machine T and for any input x, whether or not T
will halt, that is, whether or not x lies in dom1(T ). We would simply compute
the Gödel Number y for T , apply H to the input (x, y), and observe whether
or not H(x, y) equals 1. In this way, we would solve the Halting Problem.

41◦ A. Turing proved that no such Turing Machine H exists. To prove this
remarkable result, one can argue by contradiction, as follows. Suppose that
such a machine H exists. Then one could design a Turing Machine T such
that dom1(T ) = N and such that:

T (x) =
{

0 if H(x, x) = 0
U(x, x) + 1 if H(x, x) = 1

where x is any nonnegative integer. Let y be the Gödel Number of T . Of
course, y is in dom1(T ) and:

T (y) = U(y, y)
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However:
y ∈ dom1(T ) =⇒ (y, y) ∈ dom2(U)

=⇒ H(y, y) = 1
=⇒ T (y) = U(y, y) + 1

This bald contradiction shows that such a machine cannot exist.

8 The Busy Beaver

42◦ Let n be any positive integer. Let us consider all Turing Machines T for
which there are n states:

S1, S2, . . . , Sn

and for which 0 lies in dom1(T ). Let m stand for the largest of all the numbers:

T (0)

where T runs through all such machines. By definition, the number m is the
value of the Busy Beaver Function B at n:

B(n) = m

Just to be complete, we define:

B(0) = 0

Let us show that B is NOT computable by a Turing Machine.

43◦ First, we contend that, for any positive integers m and n:

m + 1 < n =⇒ B(m) < B(n)

To prove the contention, we introduce a Turing Machine T such that the
number of states of T is m, 0 lies in dom1(T ), and T (0) = B(m). Obviously,
we can augment T by 2 additional states and modify the table to produce a
new Turing Machine T̂ such that 0 lies in dom1(T̂ ) and:

T̂ (0) = T (0) + 1

Hence:
B(m) = T (0) < T̂ (0) ≤ B(m + 2) ≤ B(n)

44◦ Second, we contend that there is a positive integer d such that, for any
positive integer n:

2B(n) ≤ B(n + d + 1)
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To prove the contention, we introduce a Turing Machine D such that, for each
nonnegative integer n, n lies in the dom1(D) and D(n) = 2n. Let d be the
number of states of D. Let T be a Turing Machine such that the number
of states of T is n, 0 lies in dom1(T ), and T (0) = B(n). Let DT be the
composition of D and T . The number of states of DT is n + d +1. The extra
state figures in forming the composition of the actions of the machines. We
find that:

2B(n) = 2T (0) = (DT )(0) ≤ B(n + d + 1)

45◦ It follows that, for any positive integer n:

4B(n) ≤ 2B(n + d + 1) ≤ B(n + 2d + 2)

By induction, we find that, for any positive integer j:

2jB(n) ≤ B(n + jd + j)

46◦ Finally, let us SUPPOSE that there is a Turing Machine B which com-
putes the Busy Beaver Function B. Let b be the number of states of B.
Let n be any positive integer. Let T = B2Σn be the Turing Machine pro-
duced by composition of the 2-fold composition of B with itself and the n-fold
composition of Σ with itself. The number of states of T is 2b + 2n + n + 1.
Obviously:

B(B(n)) = (B2Σn)(0) = T (0) ≤ B(2b + 3n + 1)

By article 43◦, we infer that:

B(n) ≤ 2b + 3n + 2

Indeed, if it were not so then (2b+3n+1)+1 < B(n) , so that B(2b+3n+1) <
B(B(n)), which is false. By article 44◦:

2jB(n) ≤ B(n + jd + j) ≤ 2b + 3(n + jd + j) + 2

where j and n are any positive integers. We infer that B is the zero function,
which is absurd.

47• Let n be any positive integer. Show that there are:

(4n + 1)2n

distinct Turing Machines with n states.
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