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1◦ In context of Zermelo/Fraenkel Set Theory, we plan to prove a basic
theorem, called (O). From (O), we will derive a circle of implications relating
the Axiom of Choice and its various relatives.

2◦ Let X be any nonempty set, partially ordered by the relation ≤. Let T
be a subset of X . One says that T is a chain in X iff T is totally ordered.
That is, for any members u and v of T , either u ≤ v or v ≤ u.

3◦ One says that X is chain complete iff, for every chain T in X , the subset
T ∗ of X consisting of all upper bounds for T contains a smallest member. Of
course, one denotes that member by sup(T ). Let f be any mapping carrying
X to itself. One refers to f as an optimistic mapping iff, for each x in X ,
x ≤ f(x). By a fixed point for f , one means any member w of X for which
f(w) = w. We contend that:

(O) if X is chain complete and if f is optimistic then f admits a fixed
point

4◦ Let us prove the contention. To that end, we introduce an arbitrary
element ξ in X . Let Y be any subset of X . We say that Y is invariant iff:

(1) ξ ∈ Y

(2) f(Y ) ⊆ Y

(3) for each chain T in Y , sup(T ) ∈ Y

Let Y be the family of all invariant subsets of X . Obviously, X ∈ Y, so that
Y �= ∅. Consequently, we may introduce the intersection of Y: Z = ∩Y.
Clearly, Z is invariant and, for any subset Y of X , if Y is invariant then
Z ⊆ Y . We may say that Z is the minimum invariant subset of X .

5◦ Let Yo be the subset of X consisting of all x such that ξ ≤ x. Of course,
Yo is invariant, so that Z ⊆ Yo. Hence:

(4) for each z in Z, ξ ≤ z

6◦ We claim that Z is a chain in X . Having proved the claim, we may
complete the proof of the contention, as follows. Let w = sup(Z). Of course,
f(w) ∈ Z. Hence, w ≤ f(w) ≤ w, so that f(w) = w. �
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7◦ To prove the claim, it is sufficient to prove that:

(5) for any u in Z and for any v in Z, v ≤ u or f(u) ≤ v

because u ≤ f(u). To prove (5), we argue as follows. Let U be the subset of
Z consisting of all u such that, for any z in Z, if z < u then f(z) ≤ u. Let
u be any member of U . Let Vu be the subset of Z consisting of all v such
that v ≤ u or f(u) ≤ v. By (4), ξ ∈ Vu. Let v be any member of Vu. If
v < u then f(v) ≤ u, because u ∈ U ; if v = u then f(u) ≤ f(v); if f(u) ≤ v
then f(u) ≤ v ≤ f(v). Hence, f(v) ∈ Vu. Let T be any chain in Vu. Let
s = sup(T ). It may happen that, for each t in T , t ≤ u; if so, then s ≤ u.
If not, then there is some t in T such that f(u) ≤ t; hence, f(u) ≤ s. It
follows that s ∈ Vu. Altogether, we infer that Vu is invariant, so that Vu = Z.
Therefore:

(6) for any u in U and for any v in Z, v ≤ u or f(u) ≤ v

8◦ By default, ξ ∈ U . Let u be any member of U . Let z be any member
of Z for which z < f(u). By (6), z ≤ u. If z < u then f(z) ≤ u ≤ f(u); if
z = u then f(z) ≤ f(u). Hence, f(u) ∈ U . Let T be any chain in U . Let
s = sup(T ). Let z be any member of Z for which z < s. Obviously, there is
some t in T such that t �≤ z, so that f(t) �≤ z. By (6), z ≤ t. In fact, z < t,
so that f(z) ≤ t ≤ s. Consequently, s ∈ U . Altogether, we infer that U is
invariant, so that U = Z. Therefore, (5) coincides with (6). �

9◦ At this point, let us state the Axiom of Choice (A), together with a close
relative (B) of it:

(A) for any family Y of mutually disjoint nonempty sets, there is a
subset Z of ∪Y such that, for each Y in Y, Z ∩ Y is a singleton

(B) for any nonempty sets X and Y and for any mapping F carrying
X to Po(Y ), there is a mapping C carrying X to Y such that, for each ξ in
X , C(ξ) ∈ F (ξ)

In statement (B), we have introduced Po(Y ) to stand for the set of all
nonempty subsets of Y .

10◦ Let us prove that (A) implies (B). Given X , Y , and F as described, let
us introduce the mapping Φ carrying X to Po(X × Y ), which assigns to each
ξ in X the value {ξ} × F (ξ). Clearly, Φ is injective and the range Y of Φ is
a family of mutually disjoint subsets of X × Y . Let Z be a subset of X × Y
such that, for each ξ in X , Z ∩ Φ(ξ) is a singleton. Clearly, Z is the graph of
a mapping C carrying X to Y of the sort required. �
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11◦ Again, let X be any nonempty set, partially ordered by the relation ≤.
Let X be the set of all chains in X , ordered by inclusion. Let T be a chain
in X . Clearly, T = ∪T is a chain in X . Moreover, T = sup(T ). Hence, X is
chain complete. Let us apply (B) and (O) to prove Hausdorff’s Principle:

(H) X contains maximal members

Let F be the mapping carrying X to P(X ), defined as follows. For each T in
X , F (T ) is the subset of X containing all chains U in X for which T ⊂ U .
That is, T ⊆ U while T �= U . Let us suppose that, for each T in X , F (T ) �= ∅.
Applying (B), we obtain a mapping C carrying X to X such that, for each
T in X , T ⊂ C(T ). Such a mapping would be optimistic but would have no
fixed point, contradicting (O). We infer that our supposition is untenable,
hence, that there is some chain T in X for which F (T ) = ∅. Such a chain is
maximal. �

12◦ One says that X is chain bounded iff, for every chain T in X , the subset
T ∗ of X consisting of all upper bounds for T is nonempty. Let us apply
Hausdorff’s Principle to prove Zorn’s Lemma:

(Z) if X is chain bounded then X contains maximal members

For the proof, one need only introduce an upper bound m for a maximal chain
T in X . �

13◦ One says that X is well ordered iff, for each member Y of Po(X), Y
contains a smallest member. Let us apply Zorn’s Lemma to prove the Well
Ordering Principle:

(W ) for any nonempty set X , there is a relation ≤ on X with respect
to which X is partially ordered and well ordered

Let X be any nonempty set. Let Y be the set of all ordered pairs (Y,≤),
where Y is a nonempty subset of X and where ≤ is a relation on Y with
respect to which Y is partially ordered and well ordered. Obviously, Y is
nonempty. Let us introduce the following relation on Y:

(Y1,≤1) 	 (Y2,≤2)

iff:

(1) Y1 ⊆ Y2

(2) for any y1 in Y1 and for any y2 in Y1, y1 ≤1 y2 iff y1 ≤2 y2

(3) for any y1 in Y1 and for any y2 in Y2, if y2 /∈ Y1 then y1 ≤2 y2
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By straightforward argument, one can show that Y is chain bounded, in
fact, chain complete. Zorn’s Lemma yields a maximal member (Y,≤) of Y.
Obviously, Y = X . �

14◦ Finally, let us prove that (W ) implies (A). Let Y be any family of
mutually disjoint nonempty sets. Let X = ∪Y. Let ≤ be a relation on X
with respect to which X is partially ordered and well ordered. Let M be the
subset of Po(X) × X consisting of all ordered pairs (Y, ξ) for which:

(ξ ∈ Y ) ∧ (∀η)(η ∈ Y −→ ξ ≤ η))

Clearly, M is the graph of a mapping L carrying Po(X) to X such that, for
each Y in Po(X), L(Y ) is the smallest member of Y . Let Z = L(Y). Clearly,
for each Y in Y, Z ∩ Y is a singleton. �

15◦ Informed by (O), we have proved the following cycle:

(A) =⇒ (B)
(O)
=⇒ (H) =⇒ (Z) =⇒ (W ) =⇒ (A)
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