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1°  In context of Zermelo/Fraenkel Set Theory, we plan to prove a basic
theorem, called (O). From (O), we will derive a circle of implications relating
the Axiom of Choice and its various relatives.

2°  Let X be any nonempty set, partially ordered by the relation <. Let T’
be a subset of X. One says that T is a chain in X iff T is totally ordered.
That is, for any members v and v of T, either u < v or v < u.

3°  One says that X is chain complete iff, for every chain T in X, the subset
T* of X consisting of all upper bounds for T' contains a smallest member. Of
course, one denotes that member by sup(T'). Let f be any mapping carrying
X to itself. One refers to f as an optimistic mapping iff, for each = in X,
z < f(z). By a fized point for f, one means any member w of X for which
f(w) = w. We contend that:

(O) if X is chain complete and if f is optimistic then f admits a fixed
point

4°  Let us prove the contention. To that end, we introduce an arbitrary
element £ in X. Let Y be any subset of X. We say that Y is invariant iff:

(1) €Y
(2) fY)cy
(3) for each chain TinY, sup(T) €Y

Let Y be the family of all invariant subsets of X. Obviously, X € ), so that
Y # 0. Consequently, we may introduce the intersection of J: Z = NY.
Clearly, Z is invariant and, for any subset Y of X, if Y is invariant then
Z CY. We may say that Z is the minimum invariant subset of X.

5°  Let Y, be the subset of X consisting of all x such that £ < z. Of course,
Y, is invariant, so that Z C Y,. Hence:

(4) foreachzin Z, £ <z
6° We claim that Z is a chain in X. Having proved the claim, we may

complete the proof of the contention, as follows. Let w = sup(Z). Of course,
f(w) € Z. Hence, w < f(w) < w, so that f(w) = w.4



7°  To prove the claim, it is sufficient to prove that:
(5) for any win Z and for any v in Z, v <w or f(u) <w

because u < f(u). To prove (5), we argue as follows. Let U be the subset of
Z consisting of all u such that, for any z in Z, if z < u then f(z) < u. Let
u be any member of U. Let V, be the subset of Z consisting of all v such
that v < w or f(u) < v. By (4), £ € V,,. Let v be any member of V,,. If
v < u then f(v) < u, because u € U; if v = u then f(u) < f(v); if f(u) <w
then f(u) < v < f(v). Hence, f(v) € V,,. Let T be any chain in V,. Let
s = sup(T). It may happen that, for each ¢t in T, ¢t < w; if so, then s < w.
If not, then there is some ¢ in T such that f(u) < t; hence, f(u) < s. It
follows that s € V,,. Altogether, we infer that V,, is invariant, so that V,, = Z.
Therefore:

(6) for any uwin U and for any v in Z, v <wu or f(u) <wv

8° By default, £ € U. Let u be any member of U. Let z be any member
of Z for which z < f(u). By (6), z < u. If z < u then f(z) < u < f(u); if
z = u then f(z) < f(u). Hence, f(u) € U. Let T be any chain in U. Let
s = sup(T). Let z be any member of Z for which z < s. Obviously, there is
some ¢ in T such that ¢ £ z, so that f(t) £ z. By (6), z < t. In fact, z < t,
so that f(z) <t < s. Consequently, s € U. Altogether, we infer that U is
invariant, so that U = Z. Therefore, (5) coincides with (6). 4

9° At this point, let us state the Axiom of Choice (A), together with a close
relative (B) of it:

(A) for any family ) of mutually disjoint nonempty sets, there is a
subset Z of U)Y such that, for each Y in ), ZNY is a singleton

(B) for any nonempty sets X and Y and for any mapping F' carrying
X to P,(Y), there is a mapping C carrying X to Y such that, for each £ in
X, C(§) € F(¢)

In statement (B), we have introduced P,(Y) to stand for the set of all
nonempty subsets of Y.

10°  Let us prove that (A4) implies (B). Given X, Y, and F' as described, let
us introduce the mapping ® carrying X to P,(X x Y'), which assigns to each
¢ in X the value {¢{} x F(§). Clearly, ® is injective and the range Y of ® is
a family of mutually disjoint subsets of X x Y. Let Z be a subset of X x Y
such that, for each ¢ in X, Z N ®(¢) is a singleton. Clearly, Z is the graph of
a mapping C carrying X to Y of the sort required.



11° Again, let X be any nonempty set, partially ordered by the relation <.
Let X be the set of all chains in X, ordered by inclusion. Let 7 be a chain
in X. Clearly, T' = UT is a chain in X. Moreover, T = sup(7). Hence, X is
chain complete. Let us apply (B) and (O) to prove Hausdorff’s Principle:

(H) X contains maximal members

Let F be the mapping carrying X to P(X), defined as follows. For each T in
X, F(T) is the subset of X' containing all chains U in X for which ' C U.
That is, T C U while T # U. Let us suppose that, for each T in X, F(T) # 0.
Applying (B), we obtain a mapping C carrying X’ to X such that, for each
Tin X, T C C(T). Such a mapping would be optimistic but would have no
fixed point, contradicting (O). We infer that our supposition is untenable,
hence, that there is some chain 7" in X' for which F(T') = (). Such a chain is
maximal. f

12° One says that X is chain bounded iff, for every chain T in X, the subset
T* of X consisting of all upper bounds for 7" is nonempty. Let us apply
Hausdorff’s Principle to prove Zorn’s Lemma:

(Z) if X is chain bounded then X contains maximal members

For the proof, one need only introduce an upper bound m for a maximal chain
Tin X.q

13° One says that X is well ordered iff, for each member Y of P,(X), YV
contains a smallest member. Let us apply Zorn’s Lemma to prove the Well
Ordering Principle:

(W) for any nonempty set X, there is a relation < on X with respect
to which X is partially ordered and well ordered

Let X be any nonempty set. Let Y be the set of all ordered pairs (Y, <),
where Y is a nonempty subset of X and where < is a relation on Y with
respect to which Y is partially ordered and well ordered. Obviously, Y is
nonempty. Let us introduce the following relation on Y:

(Yla Sl) = (YQ; §2)
iff:

1) ey
(2) for any y; in Y7 and for any yo in Y1, y1 <1 y2 iff y1 <o 9o
(3) for any y; in Y7 and for any yo in Ya, if yo ¢ Y7 then y1 <o yo
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By straightforward argument, one can show that Y is chain bounded, in
fact, chain complete. Zorn’s Lemma yields a maximal member (Y, <) of Y.
Obviously, Y = X.{

14° Finally, let us prove that (W) implies (A4). Let Y be any family of
mutually disjoint nonempty sets. Let X = U)Y. Let < be a relation on X

with respect to which X is partially ordered and well ordered. Let M be the
subset of P,(X) x X consisting of all ordered pairs (Y, &) for which:

EeY)A(n)neY — £<n))
Clearly, M is the graph of a mapping L carrying P,(X) to X such that, for
each Y in P,(X), L(Y) is the smallest member of Y. Let Z = L(Y). Clearly,
for each Y in ), ZNY is a singleton. {

15° Informed by (O), we have proved the following cycle:

(A) = (B) = (H) = (2) = (W) = (4)



