SPECTRAL MEASURES

Thomas Wieting
Reed College, 2020

1 Framework

2 Theorem

1 Framework

01° We begin with a separable compact Hausdorff space X. The commutative C^{*}-algebras $C(X)$ and $B(X)$ will play central roles in our discussion. They consist of the (complex-valued) continuous functions and the (complexvalued) bounded Borel functions, respectively, defined on X. For the latter, we intend that X be supplied with the σ-algebra \mathcal{B} consisting of all Borel subsets of X.
02° Now let \mathbf{H} be a separable (complex) Hilbert Space. Let $\mathbf{B}(\mathbf{H})$ be the W^{*}-algebra consisting of all bounded linear operators on \mathbf{H} and let $\mathbf{P}(\mathbf{H})$ be the partial Boolean σ-algebra consisting of all projections in $\mathbf{B}(\mathbf{H})$.
03° Let Π be a spectral measure defined on \mathcal{B} with values in $\mathbf{P}(\mathbf{H})$. The following familiar definition produces a $*$-homomorphism β carrying $B(X)$ to B(H):

$$
\begin{equation*}
\left.\langle\beta(g) u, v\rangle=\int_{X} g(x) 《 \Pi(d x) u, v\right\rangle \quad(g \in B(X), u, v \in \mathbf{H}) \tag{1}
\end{equation*}
$$

04° By common knowledge, β is norm decreasing. Therefore, we could just as well describe the definition of β in terms of simple functions and uniform convergence.

2 Theorem

05° Let γ stand for the restriction of β to $C(X)$. Let \mathbf{B} and \mathbf{C} stand for the ranges of β and γ, respectively, in $\mathbf{B}(\mathbf{H})$. They are both commutative C^{*}-algebras. We contend that \mathbf{B} is the W^{*}-algebra generated by \mathbf{C} :

$$
\begin{equation*}
\mathbf{B}=\mathbf{C}^{\prime \prime} \tag{2}
\end{equation*}
$$

The foregoing relation is important and useful, but far from obvious. The object of this essay is to prove the relation.
06° Losing no generality, we may presume that the support of Π is X. That is, for each open subset V of X, if $\Pi(V)=\mathbf{0}$ then $V=\emptyset$. Consequently, γ is injective, so that γ is a $*$-isomorphism carrying $C(X)$ to \mathbf{C}.
07° Let $N(X)$ be the null space of β, a closed $*$-ideal in $B(X)$. Let $L(X)$ stand for the quotient of $B(X)$ by $N(X)$:

$$
L(X)=B(X) / N(X)
$$

Let π be the quotient mapping carrying $B(X)$ to $L(X)$. The norm on $L(X)$ is defined as follows:

$$
\begin{equation*}
\left\|g^{\bullet}\right\|=\inf \{\|g+h\|: h \in N(X)\} \quad\left(g \in B(X), g^{\bullet}=\pi(g)\right) \tag{3}
\end{equation*}
$$

By common knowledge, $L(X)$ is a commutative C^{*}-algebra. Let λ be the corresponding mapping carrying $L(X)$ to $\mathbf{B}(\mathbf{H})$. We mean to say that:

$$
\lambda\left(g^{\bullet}\right)=\lambda(\pi(g))=\beta(g) \quad\left(g \in B(X), g^{\bullet}=\pi(g)\right)
$$

By design, λ is a $*$-isomorphism carrying $L(X)$ to \mathbf{B}.
08° Obviously, $C(X) \cap N(X)=\{0\}$. By restricting π to $C(X)$, we obtain an injective *-homomorphism ι carrying $C(X)$ to $L(X)$. By design:

$$
\lambda(\iota(f))=\gamma(f) \quad(f \in C(X))
$$

09° Let us pay attention to $N(X)$. Let g be any function in $B(X)$ and let F be the subset of X consisting of all members z such that $g(z) \neq 0$. Clearly, $\beta(g)=0$ iff $\|\beta(g)\|^{2}=0$ iff $\left\|\beta\left(|g|^{2}\right)\right\|=0$ iff $\beta\left(|g|^{2}\right)=0$ iff, for each u in \mathbf{H} :

$$
\int_{F}|g(x)|^{2}\langle\Pi(d x) u, u\rangle=0
$$

Consequently, $g \in N(X)$ iff $\Pi(F)=0$.
10° Let us proceed to prove the Theorem, that is, relation (2). With reference to Zorn's Lemma, we may introduce a maximal commutative W^{*}-subalgebra \mathbf{D} of $\mathbf{B}(\mathbf{H})$ such that $\mathbf{B} \subseteq \mathbf{D}$. We may also introduce a (normalized) cyclic vector w for \mathbf{D}. In turn, w would be a separating vector for \mathbf{B}. That is, for each g in $B(X)$, if $\beta(g) w=0$ then $\beta(g)=0$. In particular, for each E in \mathcal{B}, if $\Pi(E) w=0$ then $\Pi(E)=0$, since the range of Π is included in \mathbf{B}.
11° Let m be the normalized nonnegative measure on \mathcal{B} defined as follows:

$$
m(E)=\langle\Pi \Pi(E) w, w\rangle \quad(E \in \mathcal{B})
$$

Obviously, $m(E)=\|\Pi(E) w\|^{2}$. It follows that, for each E in $\mathcal{B}, m(E)=0$ iff $\Pi(E)=0$. We conclude that, for each function g in $B(X), g \in N(X)$ iff $g=0$ modulo m.
12° Noting relation (3), we may identify $L(X)$ with the familiar commutative C^{*}-algebra $L_{m}^{\infty}(X)$. The norm on $L_{m}^{\infty}(X)$ is the "essential supremum." Of course, as a Banach space, $L_{m}^{\infty}(X)$ is the dual space for the Banach space $L_{m}^{1}(X)$. By a fundamental theorem for our subject, we infer that $L(X)$ is in fact a commutative W^{*}-algebra.
13° By the $*$-isomorphism λ, we infer that \mathbf{B} is a commutative W^{*}-algebra. Hence, $\mathbf{C}^{\prime \prime} \subseteq \mathbf{B}$.
14° For the converse inclusion, we introduce the subfamily $A(X)$ of $B(X)$ consisting of all functions g in $B(X)$ such that $\lambda\left(g^{\bullet}\right)$ is in $\mathbf{C}^{\prime \prime}$. Clearly, $C(X) \subseteq$ $A(X)$ and $A(X)$ is a linear subspace of $B(X)$. Moreover, for each uniformly bounded pointwise convergent sequence $\left\{g_{j}\right\}$ of functions in $A(X)$ and for each function h in $B(X)$, if $\left\{g_{j}\right\}$ converges pointwise to h then h is in $A(X)$, because, by the Dominated Convergence Theorem:

$$
\begin{aligned}
\left\langle\lambda\left(g_{j}^{\bullet}\right) u, v\right\rangle & =\int_{X} g_{j}(x)\langle\Pi(d x) u, v\rangle \\
& \longrightarrow \int_{X} h(x)\langle\Pi(d x) u, v\rangle \quad(u, v \in \mathbf{H}) \\
& =\left\langle\lambda\left(h^{\bullet}\right) u, v\right\rangle
\end{aligned}
$$

By a theorem of Baire, these properties of $A(X)$ imply that $A(X)=B(X)$. Therefore, $\mathbf{B} \subseteq \mathbf{C}^{\prime \prime}$.
15° We conclude that $\mathbf{B}=\mathbf{C}^{\prime \prime}$.

