SPECTRAL MEASURES

Thomas Wieting Reed College, 2020

1 Framework

2 Theorem

1 Framework

01° We begin with a separable compact Hausdorff space X. The commutative C^* -algebras C(X) and B(X) will play central roles in our discussion. They consist of the (complex-valued) continuous functions and the (complexvalued) bounded Borel functions, respectively, defined on X. For the latter, we intend that X be supplied with the σ -algebra \mathcal{B} consisting of all Borel subsets of X.

02° Now let **H** be a separable (complex) Hilbert Space. Let $\mathbf{B}(\mathbf{H})$ be the W^* -algebra consisting of all bounded linear operators on **H** and let $\mathbf{P}(\mathbf{H})$ be the partial Boolean σ -algebra consisting of all projections in $\mathbf{B}(\mathbf{H})$.

03° Let Π be a spectral measure defined on \mathcal{B} with values in $\mathbf{P}(\mathbf{H})$. The following familiar definition produces a *-homomorphism β carrying B(X) to $\mathbf{B}(\mathbf{H})$:

(1)
$$\langle\!\langle \beta(g)u, v \rangle\!\rangle = \int_X g(x) \langle\!\langle \Pi(dx)u, v \rangle\!\rangle \quad (g \in B(X), u, v \in \mathbf{H})$$

 04° By common knowledge, β is norm decreasing. Therefore, we could just as well describe the definition of β in terms of simple functions and uniform convergence.

2 Theorem

05° Let γ stand for the restriction of β to C(X). Let **B** and **C** stand for the ranges of β and γ , respectively, in **B**(**H**). They are both commutative C^* -algebras. We contend that **B** is the W^* -algebra generated by **C**:

$$\mathbf{B} = \mathbf{C}''$$

The foregoing relation is important and useful, but far from obvious. The object of this essay is to prove the relation.

 06° Losing no generality, we may presume that the support of Π is X. That is, for each open subset V of X, if $\Pi(V) = \mathbf{0}$ then $V = \emptyset$. Consequently, γ is injective, so that γ is a *-isomorphism carrying C(X) to C.

 07° Let N(X) be the null space of β , a closed *-ideal in B(X). Let L(X) stand for the quotient of B(X) by N(X):

$$L(X) = B(X)/N(X)$$

Let π be the quotient mapping carrying B(X) to L(X). The norm on L(X) is defined as follows:

(3)
$$||g^{\bullet}|| = \inf\{||g+h|| : h \in N(X)\}$$
 $(g \in B(X), g^{\bullet} = \pi(g))$

By common knowledge, L(X) is a commutative C^* -algebra. Let λ be the corresponding mapping carrying L(X) to $\mathbf{B}(\mathbf{H})$. We mean to say that:

$$\lambda(g^{\bullet}) = \lambda(\pi(g)) = \beta(g) \qquad (g \in B(X), \ g^{\bullet} = \pi(g))$$

By design, λ is a *-isomorphism carrying L(X) to **B**.

08° Obviously, $C(X) \cap N(X) = \{0\}$. By restricting π to C(X), we obtain an injective *-homomorphism ι carrying C(X) to L(X). By design:

$$\lambda(\iota(f)) = \gamma(f) \qquad (f \in C(X))$$

09° Let us pay attention to N(X). Let g be any function in B(X) and let F be the subset of X consisting of all members z such that $g(z) \neq 0$. Clearly, $\beta(g) = 0$ iff $\|\beta(g)\|^2 = 0$ iff $\|\beta(|g|^2)\| = 0$ iff $\beta(|g|^2) = 0$ iff, for each u in **H**:

$$\int_F |g(x)|^2 \, \langle\!\!\langle \, \Pi(dx)u, u \, \rangle\!\!\rangle = 0$$

Consequently, $g \in N(X)$ iff $\Pi(F) = 0$.

10° Let us proceed to prove the Theorem, that is, relation (2). With reference to Zorn's Lemma, we may introduce a maximal commutative W^* -subalgebra **D** of **B**(**H**) such that **B** \subseteq **D**. We may also introduce a (normalized) cyclic vector w for **D**. In turn, w would be a separating vector for **B**. That is, for each g in B(X), if $\beta(g)w = 0$ then $\beta(g) = 0$. In particular, for each E in \mathcal{B} , if $\Pi(E)w = 0$ then $\Pi(E) = 0$, since the range of Π is included in **B**. 11° Let m be the normalized nonnegative measure on \mathcal{B} defined as follows:

$$m(E) = \langle\!\langle \Pi(E)w, w \rangle\!\rangle \qquad (E \in \mathcal{B})$$

Obviously, $m(E) = \|\Pi(E)w\|^2$. It follows that, for each E in \mathcal{B} , m(E) = 0 iff $\Pi(E) = 0$. We conclude that, for each function g in B(X), $g \in N(X)$ iff g = 0 modulo m.

12° Noting relation (3), we may identify L(X) with the familiar commutative C^* -algebra $L^{\infty}_m(X)$. The norm on $L^{\infty}_m(X)$ is the "essential supremum." Of course, as a Banach space, $L^{\infty}_m(X)$ is the dual space for the Banach space $L^1_m(X)$. By a fundamental theorem for our subject, we infer that L(X) is in fact a commutative W^* -algebra.

13° By the *-isomorphism λ , we infer that **B** is a commutative W^* -algebra. Hence, $\mathbf{C}'' \subseteq \mathbf{B}$.

14° For the converse inclusion, we introduce the subfamily A(X) of B(X) consisting of all functions g in B(X) such that $\lambda(g^{\bullet})$ is in \mathbb{C}'' . Clearly, $C(X) \subseteq A(X)$ and A(X) is a linear subspace of B(X). Moreover, for each uniformly bounded pointwise convergent sequence $\{g_j\}$ of functions in A(X) and for each function h in B(X), if $\{g_j\}$ converges pointwise to h then h is in A(X), because, by the Dominated Convergence Theorem:

$$\begin{split} \langle\!\!\langle \lambda(g_j^{\bullet})u, v \rangle\!\!\rangle &= \int_X g_j(x) \langle\!\!\langle \Pi(dx)u, v \rangle\!\!\rangle \\ &\longrightarrow \int_X h(x) \langle\!\!\langle \Pi(dx)u, v \rangle\!\!\rangle \qquad (u, v \in \mathbf{H}) \\ &= \langle\!\!\langle \lambda(h^{\bullet})u, v \rangle\!\!\rangle \end{aligned}$$

By a theorem of Baire, these properties of A(X) imply that A(X) = B(X). Therefore, $\mathbf{B} \subseteq \mathbf{C}''$.

15° We conclude that $\mathbf{B} = \mathbf{C}''$.