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1 Framework

01◦ We begin with a separable compact Hausdorff space X . The commu-
tative C∗-algebras C(X) and B(X) will play central roles in our discussion.
They consist of the (complex-valued) continuous functions and the (complex-
valued) bounded Borel functions, respectively, defined on X . For the latter,
we intend that X be supplied with the σ-algebra B consisting of all Borel
subsets of X .

02◦ Now let H be a separable (complex) Hilbert Space. Let B(H) be the
W ∗-algebra consisting of all bounded linear operators on H and let P(H) be
the partial Boolean σ-algebra consisting of all projections in B(H).

03◦ Let Π be a spectral measure defined on B with values in P(H). The
following familiar definition produces a ∗-homomorphism β carrying B(X) to
B(H):

(1) 〈〈 β(g)u, v 〉〉 =

∫
X

g(x) 〈〈 Π(dx)u, v 〉〉 (g ∈ B(X), u, v ∈ H)

04◦ By common knowledge, β is norm decreasing. Therefore, we could just
as well describe the definition of β in terms of simple functions and uniform
convergence.

2 Theorem

05◦ Let γ stand for the restriction of β to C(X). Let B and C stand for
the ranges of β and γ, respectively, in B(H). They are both commutative
C∗-algebras. We contend that B is the W ∗-algebra generated by C:

(2) B = C
′′

The foregoing relation is important and useful, but far from obvious. The
object of this essay is to prove the relation.
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06◦ Losing no generality, we may presume that the support of Π is X . That
is, for each open subset V of X , if Π(V ) = 0 then V = ∅. Consequently, γ is
injective, so that γ is a ∗-isomorphism carrying C(X) to C.

07◦ Let N(X) be the null space of β, a closed ∗-ideal in B(X). Let L(X)
stand for the quotient of B(X) by N(X):

L(X) = B(X)/N(X)

Let π be the quotient mapping carrying B(X) to L(X). The norm on L(X)
is defined as follows:

(3) ‖g•‖ = inf{‖g + h‖ : h ∈ N(X)} (g ∈ B(X), g• = π(g))

By common knowledge, L(X) is a commutative C∗-algebra. Let λ be the
corresponding mapping carrying L(X) to B(H). We mean to say that:

λ(g•) = λ(π(g)) = β(g) (g ∈ B(X), g• = π(g))

By design, λ is a ∗-isomorphism carrying L(X) to B.

08◦ Obviously, C(X)∩N(X) = {0}. By restricting π to C(X), we obtain an
injective ∗-homomorphism ι carrying C(X) to L(X). By design:

λ(ι(f)) = γ(f) (f ∈ C(X))

09◦ Let us pay attention to N(X). Let g be any function in B(X) and let F
be the subset of X consisting of all members z such that g(z) 6= 0. Clearly,
β(g) = 0 iff ‖β(g)‖2 = 0 iff ‖β(|g|2)‖ = 0 iff β(|g|2) = 0 iff, for each u in H:

∫
F

|g(x)|2 〈〈 Π(dx)u, u 〉〉 = 0

Consequently, g ∈ N(X) iff Π(F ) = 0.

10◦ Let us proceed to prove the Theorem, that is, relation (2). With reference
to Zorn’s Lemma, we may introduce a maximal commutative W ∗-subalgebra
D of B(H) such that B ⊆ D. We may also introduce a (normalized) cyclic
vector w for D. In turn, w would be a separating vector for B. That is, for
each g in B(X), if β(g)w = 0 then β(g) = 0. In particular, for each E in B,
if Π(E)w = 0 then Π(E) = 0, since the range of Π is included in B.
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11◦ Let m be the normalized nonnegative measure on B defined as follows:

m(E) = 〈〈 Π(E)w,w 〉〉 (E ∈ B)

Obviously, m(E) = ‖Π(E)w‖2. It follows that, for each E in B, m(E) = 0
iff Π(E) = 0. We conclude that, for each function g in B(X), g ∈ N(X) iff
g = 0 modulo m.

12◦ Noting relation (3), we may identify L(X) with the familiar commutative
C∗-algebra L∞

m (X). The norm on L∞

m (X) is the “essential supremum.” Of
course, as a Banach space, L∞

m (X) is the dual space for the Banach space
L1

m(X). By a fundamental theorem for our subject, we infer that L(X) is in
fact a commutative W ∗-algebra.

13◦ By the ∗-isomorphism λ, we infer that B is a commutative W ∗-algebra.
Hence, C′′ ⊆ B.

14◦ For the converse inclusion, we introduce the subfamily A(X) of B(X)
consisting of all functions g in B(X) such that λ(g•) is in C

′′. Clearly, C(X) ⊆
A(X) and A(X) is a linear subspace of B(X). Moreover, for each uniformly
bounded pointwise convergent sequence {gj} of functions in A(X) and for
each function h in B(X), if {gj} converges pointwise to h then h is in A(X),
because, by the Dominated Convergence Theorem:

〈〈 λ(g•j )u, v 〉〉 =

∫
X

gj(x) 〈〈 Π(dx)u, v 〉〉

−→

∫
X

h(x) 〈〈 Π(dx)u, v 〉〉

= 〈〈 λ(h•)u, v 〉〉

(u, v ∈ H)

By a theorem of Baire, these properties of A(X) imply that A(X) = B(X).
Therefore, B ⊆ C

′′.

15◦ We conclude that B = C
′′. •
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