
CHAPTER 2

SPACES OF MEASURES

Let X be a separable metrizable topological space. Let M(X) be the family of
all normalized finite borel measures defined on the borel subsets of X . In this
chapter, we will show that M(X) may be viewed as a separable metrizable
topological space in a useful way. It will turn out that if X is compact, pōlish,
standard, or analytic then respectively the same is true of M(X).

2.1 THE FORTET METRIC

The Lipschitz Algebra L(X)

01◦ Let X be a separable metrizable topological space. Let B(X) be the
algebra consisting of all bounded complex-valued borel functions defined on
X . We will make use of the uniform norm on B(X):

‖f‖ := sup
x∈X

|f(x)| (f ∈ B(X))

Let C(X) be the subalgebra of B(X) consisting of all bounded complex-valued
continuous functions defined on X .

For later reference, let us note that the real-valued functions in B(X)
form a lattice. Thus, for any real-valued functions f and g in B(X), one
defines the infimum and the supremum of f and g as follows:

(f ∧ g)(x) := min {f(x), g(x)}

(f ∨ g)(x) := max {f(x), g(x)}
(x ∈ X)

It is easy to check that both f ∧ g and f ∨ g lie in B(X). Moreover, if f and
g lie in C(X) then both f ∧ g and f ∨ g lie in C(X).

02◦ Let d be a metric on X which defines the given topology. Let L(X) be
the subalgebra of C(X) consisting of all bounded complex-valued continuous
functions defined on X which satisfy the condition of Lipschitz with respect
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44 2 SPACES OF MEASURES

to d. For any such function f , we will denote the lipschitz constant by 〈〈f〉〉.
By definition:

|f(x)− f(y)| ≤ 〈〈f〉〉d(x, y) (x ∈ X, y ∈ X)

where 〈〈f〉〉 is the smallest nonnegative real number satisfying the foregoing
inequality. We will make use of the lipschitz norm on L(X):

[[f ]] := ‖f‖+ 〈〈f〉〉 (f ∈ L(X))

Let us note that, for any real-valued functions f and g in L(X), both f ∧ g
and f ∨ g lie in L(X). In fact:

〈〈f ∧ g〉〉 ≤ max {〈〈f〉〉, 〈〈g〉〉}

〈〈f ∨ g〉〉 ≤ max {〈〈f〉〉, 〈〈g〉〉}

Separation in L(X)

03◦ Let us apply the metric d on X to construct an array of functions in
L(X), useful to the proofs of subsequent theorems.

Let Z be a nonempty subset of X and let dZ be the real-valued function
defined on X as follows:

dZ(x) := d(x, Z) (x ∈ X)

For any x′ and x′′ in X and for any z in Z:

d(x′, Z) ≤ d(x′, z) ≤ d(x′, x′′) + d(x′′, z)

Hence:
d(x′, Z)− d(x′, x′′) ≤ d(x′′, Z)

It follows that:
|d(x′, Z)− d(x′′, Z)| ≤ d(x′, x′′)

By the foregoing relation, dZ satisfies the condition of Lipschitz (with respect
to d) and the lipschitz constant for dZ is not greater than 1.

04◦ In turn, let Z ′ and Z ′′ be any nonempty closed subsets of X . Given that
Z ′ ∩ Z ′′ = ∅, we may introduce the real-valued function dZ′,Z′′ defined on X
as follows:

dZ′,Z′′(x) :=
dZ′(x)

dZ′(x) + dZ′′ (x)
(x ∈ X)
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Obviously, for any x in X :

if x ∈ Z ′ then dZ′,Z′′(x) = 0

if x ∈ X\(Z ′ ∪ Z ′′) then 0 < dZ′,Z′′(x) < 1

if x ∈ Z ′′ then dZ′,Z′′(x) = 1

Now let 0 < d(Z ′, Z ′′). We will show that dZ′,Z′′ satisfies the condition of
Lipschitz (with respect to d) and that the lipschitz constant for dZ′,Z′′ is not
greater than d(Z ′, Z ′′)−1.

Let us first note that, for any x in X :

d(Z ′, Z ′′) ≤ dZ′(x) + dZ′′(x)

Hence, for any x′ and x′′ in X :

(dZ′,Z′′(x′)− dZ′,Z′′(x′′))d(Z ′, Z ′′)(dZ′(x′′) + dZ′′ (x′′))

≤ (dZ′,Z′′(x′)− dZ′,Z′′(x′′))(dZ′ (x′) + dZ′′ (x′))(dZ′ (x′′) + dZ′′(x′′))

= dZ′(x′)(dZ′(x′′) + dZ′′ (x′′))− dZ′(x′′)(dZ′ (x′) + dZ′′(x′))

= dZ′(x′)dZ′′(x′′)− dZ′(x′′)dZ′′(x′)

= (dZ′(x′)− dZ′(x′′))dZ′′ (x′′) + (dZ′′ (x′′)− dZ′′(x′))dX′(x′′)

≤ d(x′, x′′)(dZ′(x′′) + dZ′′ (x′′))

It follows that:

|dZ′,Z′′(x′)− dZ′,Z′′(x′′)| ≤ d(Z ′, Z ′′)−1d(x′, x′′)

05◦ Now let Z be any (nonempty) closed subset of X . We will show that
there exists a sequence {fk}∞k=1 in L(X) such that, for any positive integer
k, 〈〈fk〉〉 ≤ k and 0 ≤ 1Z ≤ fk+1 ≤ fk ≤ 1 and such that {fk}∞k=1 converges
pointwise on X to 1Z . Moreover, {fk}∞k=1 proves to be pointwise eventually
0 on X\Z.

For each positive integer k, let Yk be the (closed) subset of X consisting
of all members x for which 1/k ≤ d(x, Z). For each positive integer k, let:

fk := dYk,Z

Clearly, fk satisfies the condition of Lipschitz and the lipschitz constant for
fk is not greater than k. One can easily verify that the sequence {fk}∞k=1

in L(X) meets the foregoing conditions. Moreover, let x be any member of
X\Z. Since X\Z = ∪∞

k=1Yk, we may introduce a positive integer k such that
z ∈ Yk. Obviously, fk(z) = 0. Hence, {fk}∞k=1 is pointwise eventually 0 on
X\Z.
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One should review the foregoing argument, to take account of the default
cases in which various of the sets Yk are empty.

The Fortet Metric on M(X)

06◦ Relative to the metric d on X , one defines the fortet metric D on M(X)
as follows:

D(µ, ν) := sup
[[f ]]≤1

|

∫

X

f(x) · µ(dx) −

∫

X

f(x) · ν(dx) |

where µ and ν are any measures in M(X). Of course, we intend that f run
through L(X).

Let us verify that D so defined is in fact a metric on M(X). Just
one point requires discussion. Let µ and ν be measures in M(X) for which
D(µ, ν) = 0, which is to say that, for any f in L(X):

∫

X

f(x) · µ(dx) =

∫

X

f(x) · ν(dx)

We must show that µ = ν. Let Y be any closed subset of X . With reference
to article 5◦, we can introduce a sequence {fk}∞k=1 in L(X), bounded under
the uniform norm and convergent pointwise to the characteristic function 1Y
of Y . By the Dominated Convergence Theorem of Lebesgue, µ(Y ) = ν(Y ).
Since µ and ν are regular, µ = ν. [ See problem 5.1◦. ]

The Portmanteau Theorem

07◦ The following theorem provides several useful conditions by which one
may verify convergence relative to the fortet metric D on M(X).

Theorem 20 For any sequence {µj}
∞
j=1 in M(X) and for each ν in M(X),

the following conditions are mutually equivalent:

(1) relative to D, limj→∞ µj = ν

(2) for any f in L(X), limj→∞

∫

X
f(x) · µj(dx) =

∫

X
f(x) · ν(dx)

(3) for any borel subset Z of X , ν(int(Z)) ≤ lim infj→∞ µj(Z) and
lim supj→∞ µj(Z) ≤ ν(clo(Z))

(4) for any borel subset Z of X , if ν(per(Z)) = 0 then limj→∞ µj(Z)
= ν(Z)

(5) for any f in C(X), limj→∞

∫

X f(x) · µj(dx) =
∫

X f(x) · ν(dx)

Obviously, (1) implies (2), (3) implies (4) (because per(Z) := clo(Z)\int(Z)),
and (5) implies (2). We will prove that (2) implies (3), (4) implies (5), and
(4) implies (1).
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08◦ Let us assume (2). Let Z be any closed subset of X . With reference to
article 5◦, we can introduce a sequence {fk}∞k=1 in L(X), bounded under the
uniform norm and convergent pointwise to the characteristic function 1Z of
Z. Moreover, for any positive integer k, 1Z ≤ fk. We have:

lim sup
j→∞

µj(Z) ≤ lim sup
j→∞

∫

X

fk(x) · µj(dx)

=

∫

X

fk(x) · ν(dx)

By the Dominated Convergence Theorem of Lebesgue, it follows that:

lim sup
j→∞

µj(Z) ≤ ν(Z)

By passing to complements, one can show that, for any open subset Z of X :

ν(Z) ≤ lim inf
j→∞

µj(Z)

We conclude that (2) implies (3).

09◦ Let us assume (4). Let f be any (real-valued) function in C(X). Let ǫ
be any positive real number. The set of all real numbers r for which:

0 < ν(f−1({r}))

must be countable. Hence, we may introduce real numbers r0, r1, r2, . . . ,
rℓ−1, and rℓ such that:

r0 < −‖f‖ < r1 < r2 < . . . < rℓ−1 < ‖f‖ < rℓ

rk − rk−1 ≤ ǫ (1 ≤ k ≤ ℓ)

ν(f−1({rk})) = 0 (0 ≤ k ≤ ℓ)

For each index k (1 ≤ k ≤ ℓ), let Yk := f−1((rk−1, rk ]). Obviously, the borel
subsets:

Y1, Y2, . . . , Yℓ

of X form a finite partition of X . Moreover, for each index k (1 ≤ k ≤ ℓ),
ν(per(Yk)) = 0. Let g be the (simple) borel function defined on X such that,
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for each index k (1 ≤ k ≤ ℓ) and for any x in Yk, g(x) := rk. For each positive
integer j, we have:

|

∫

X

f · µj −

∫

X

f · ν |

≤

∫

X

|f − g| · µj +

∫

X

|f − g| · ν + |

∫

X

g · µj −

∫

X

g · ν |

≤ ǫ+ ǫ+

ℓ
∑

k=1

|rk| |µj(Yk)− ν(Yk)|

Clearly:

lim sup
j

|

∫

X

f(x) · µj(dx) −

∫

X

f(x) · ν(dx) | ≤ 2ǫ

It follows that:

lim
j→∞

∫

X

f(x) · µj(dx) =

∫

X

f(x) · ν(dx)

We conclude that (4) implies (5).

10◦ Again let us assume (4). Let T be the given topology on X and let
B be the borel algebra on X generated by T . Let C be the subfamily of B
consisting of all Y for which ν(per(Y )) = 0. Clearly, for any subsets Y ′ and
Y ′′ of X , per(Y ′ ∪Y ′′) ⊆ per(Y ′)∪ per(Y ′′). Hence, C is an algebra on X . In
the following article, we will show that C∩T is a base for T . For the moment,
let us assume that it is so.

Let ǫ be any positive real number. Since C is an algebra on X and since
C ∩ T is a base for T , we may introduce a finite partition:

Z0, Z1, Z2, . . . , Zℓ

of X by sets in C such that, for any index k (1 ≤ k ≤ ℓ), Zk 6= ∅ and d(Zk) ≤ ǫ
and such that ν(Z0) ≤ ǫ. For each such index k, let zk be a particular member
of Zk. Let f be any function in L(X) for which [[f ]] ≤ 1. Let g be the (simple)
borel function defined on X such that g is constantly 0 on Z0 and such that,
for each index k (1 ≤ k ≤ ℓ) and for any x in Zk, g(x) := f(zk). We note
that, for any λ in M(X):

∫

X\Z0

|f − g| · λ =

ℓ
∑

k=1

∫

Zk

|f − g| · λ

≤ ǫ

ℓ
∑

k=1

λ(Zk)

≤ ǫ
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Now, for any positive integer j, we have:

|

∫

X

f · µj −

∫

X

f · ν |

≤

∫

X

|f − g| · µj +

∫

X

|f − g| · ν + |

∫

X

g · µj −

∫

X

g · ν |

≤ µj(Z0) + ǫ+ ν(Z0) + ǫ+

ℓ
∑

k=1

|µj(Zk)− ν(Zk)|

Clearly:
lim
j→∞

D(µj , ν) = 0

We conclude that (4) implies (1). •

11◦ Now let us show that C ∩ T is a base for T .
For each z in X and for any positive real number r, let Nr(z) be the

(open) subset of X consisting of all x for which d(x, z) < r and let N̄r(z) be
the (closed) subset of X consisting of all x for which d(x, z) ≤ r. Obviously:

per(Nr(z)) ⊆ N̄r(z) \Nr(z)

Clearly, for each z in X , the corresponding family of positive real numbers
r for which 0 < ν(per(Nr(z))) must be countable. Now we may assemble a
base Y for the given topology on X comprised of sets of the form:

Yz,r := Nr(z)

where z runs through X and where r (depending upon z) runs through the
positive real numbers for which:

ν(per(Yz,r)) = 0

By design, Y ⊆ C. Hence, C ∩ T is a base for T .

12◦ For later reference, let us point to a useful technical consequence of the
Portmanteau Theorem. Let T be a countable uniformly bounded subfamily
of C(X). Let D be the pseudometric defined on M(X) as follows:

D(µ, ν) := sup
f∈T

|

∫

X

f(x) · µ(dx) −

∫

X

f(x) · ν(dx) |

where µ and ν are any measures in M(X). We claim that, under proper
design of T , D is in fact a metric on M(X) and it defines the topology on
M(X). To prove the claim, we apply the Theorem of Urysohn to introduce a
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metric d on X (defining the given topology) with respect to which X is totally
bounded. In turn, we introduce the corresponding compact extension X̂ of
X . Now L(X) can be identified with a subset of C(X̂). By problem 1.8.10◦,
we infer that, relative to the metric defined by the uniform norm on C(X̂),
L(X) is separable. Consequently, we may introduce a countable subfamily
T of L(X) which is uniformly dense in the lipschitz unit ball in L(X), that
is, in the subfamily of L(X) consisting of all functions g for which [[g]] ≤ 1.
The fortet metric D on M(X) corresponding to d would coincide with the
foregoing pseudometric D on M(X) defined by T .

13◦ Let d1 and d2 be metrics on X defining the given topology and let D1

and D2 be the corresponding fortet metrics on M(X). By the Portmanteau
Theorem, D1 and D2 define the same topology on M(X). Therefore, we may
view M(X) as a (metrizable) topological space.

14◦ Actually, M(X) proves to be separable. This fact will surface later, as a
corollary to Theorem 22. [ See also problem 5.2◦. ]

Digression

15◦ By integration, one may identify M(X) with a subset of the dual space
L(X)∗ of the banach space L(X):

µ(f) :=

∫

X

f(x) · µ(dx)

where µ is any member of M(X) and where f is any member of L(X). The
relevant norm on L(X) is the lipschitz norm. See article 2◦. Under this
identification, one may interpret the fortet metric D as the metric on M(X)
determined by the familiar norm on L(X)∗.

In similar manner, one may identifyM(X) with a subset of the dual space
C(X)∗ of the banach space C(X) (supplied with the uniform norm) and with
a subset of the dual space B(X)∗ of the banach space B(X) (supplied with
the uniform norm). However, for our purposes, the corresponding metrics
on M(X) prove to be too fine. It is intriguing that the reduction of banach
spaces from B(X) precisely to L(X) and the strengthening of norms from ‖ ‖
precisely to [[ ]] yield a metric on M(X) prefectly adapted to our study.

The Natural Embedding

16◦ For each x in X , one may introduce the dirac measure δx at x. Thus,
for any (borel) subset Y of X , δx(Y ) := 1Y (x). That is, δx(Y ) = 0 if x 6∈ Y
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while δx(Y ) = 1 if x ∈ Y . The various dirac measures comprise the natural
mapping ∆ carrying X to M(X):

∆(x) := δx (x ∈ X)

Theorem 21 The natural mapping ∆ carries X homeomorphically to the
subspace ∆(X) of M(X). Moreover, ∆(X) is a closed subset of M(X).

This result is a simple consequence of the following inequalities relating the
given metric d on X and the corresponding fortet metric D on M(X):

(•)
d(x, y)

d(x, y) + 1
≤ D(δx, δy) ≤ d(x, y) ((x, y) ∈ X ×X)

Let us prove these inequalities. Let x and y be any members of X for which
x 6= y. For any f in L(X), if [[f ]] ≤ 1 then:

|

∫

X

f(z) · δx(dz)−

∫

X

f(z) · δy(dz) | = |f(x)− f(y)| ≤ d(x, y)

Hence:
D(δx, δy) ≤ d(x, y)

With reference to article 4◦, let f be the function in L(X) defined as follows:

f(z) :=
d(z, x)

d(z, x) + d(z, y)
(z ∈ X)

Clearly, f(x) = 0 and f(y) = 1. Moreover, 〈〈f〉〉 ≤ 1/d(x, y), so that:

[[f ]] ≤
d(x, y) + 1

d(x, y)

We have:

d(x, y)

d(x, y) + 1
=

d(x, y)

d(x, y) + 1
|

∫

X

f(z) · δx(dz)−

∫

X

f(z) · δy(dz) |

Hence:
d(x, y)

d(x, y) + 1
≤ D(δx, δy)

Now it is plain that ∆ carriesX homeomorphically to the subspace ∆(X)
of M(X). Let us prove that ∆(X) is a closed subset of M(X). Let {xj}∞j=1

be a sequence in X and let ν be a measure in M(X) for which:

lim
j→∞

∆(xj) = ν
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By the (first of the) inequalities (•), {xj}∞j=1 is a cauchy sequence. For each
positive integer k, let Yk be the closure of the set of terms:

xk, xk+1, xk+2, . . .

of {xj}∞j=1. By condition (3) in Theorem 20, ν(Yk) = 1. Let Y := ∩∞
k=1Yk.

Clearly, the diameter of Y is 0 and ν(Y ) = 1. It follows that Y contains a
single member y of X and that ν = δy =: ∆(y). •

2.2 THE TOPOLOGICAL SPACE M(X)

Total Boundedness

01◦ LetX be a separable metrizable topological space and let d be a metric on
X which defines the given topology. Let D be the corresponding fortet metric
onM(X). We plan to show that the basic properties of total boundedness and
completeness carry over from the metric space X to the metric space M(X).
The converse assertions follow from the properties of the natural embedding
of X in M(X).

Theorem 22 If X is totally bounded then M(X) is totally bounded.

Let ǫ be any positive real number. We may introduce a finite partition:

Y1, Y2, . . . , Yℓ

of X by nonempty borel subsets of X such that, for each index k (1 ≤ k ≤ ℓ),
d(Yk) ≤ ǫ. For each index k (1 ≤ k ≤ ℓ), let yk be a member of Yk.

Let S be the subset of Rℓ consisting of all members s such that, for each
index k (1 ≤ k ≤ ℓ), 0 ≤ sk and such that

∑ℓ
k=1 sk = 1. Since S is compact,

we may introduce a finite subset T of S such that, for any s in S, there is
some t in T for which:

‖s− t‖ :=
ℓ

∑

k=1

|sk − tk| ≤ ǫ

For any t in T , let νt be the measure in M(X) such that, for each index k
(1 ≤ k ≤ ℓ), νt({yk}) = tk.

Now let µ be any measure in M(X). Let:

s := (µ(Y1), µ(Y2), . . . , µ(Yℓ))

and let t be a member of T for which ‖s−t‖ ≤ ǫ. We claim that D(µ, νt) ≤ 2ǫ.
It will follow that M(X) is totally bounded.
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Thus, let f be any function in L(X) for which [[f ]] ≤ 1. Let g be the
(simple) borel function defined on X such that, for each index k (1 ≤ k ≤ ℓ)
and for any x in Yk, g(x) := f(yk). Clearly, ‖f − g‖ ≤ ǫ. Consequently:

|

∫

X

f · µ−

∫

X

f · νt| ≤

∫

X

|f − g| · µ+ |

∫

X

g · µ−

∫

X

f · νt|

≤ ǫ +
ℓ

∑

k=1

|f(yk)|sk − tk|

≤ 2ǫ

Hence, D(µ, νt) ≤ 2ǫ. •

02◦ By the Theorem of Urysohn, one may select the metric d on X so that
X is totally bounded with respect to d. By the foregoing proposition, M(X)
would be totally bounded with respect to the corresponding fortet metric D
on M(X). Hence, M(X) is separable.

The Theorem of Prohorov

03◦ The following general theorem characterizes totally bounded subsets of
M(X).

Theorem 23 For any subfamily N of M(X), N is totally bounded iff it
meets the condition of Prohorov, which is to say that, for each positive real
number ǫ, there exists a totally bounded closed subset Y of X such that, for
each ν in N , ν(X\Y ) ≤ ǫ.

04◦ Let us assume first that N meets the condition of Prohorov. Let ǫ be any
real number for which 0 < ǫ < 1. We may introduce a totally bounded closed
subset Y of X such that, for each ν in N , 0 < 1 − ǫ ≤ ν(Y ). Let e be the
metric on Y obtained by restriction of d, and let E be the corresponding fortet
metric on M(Y ). By Theorem 22, M(Y ) is totally bounded with respect to
E.

Of course, we may view M(Y ) as a subset of M(X). Under this view,
one can easily check that, for any µ and ν in M(Y ), D(µ, ν) ≤ E(µ, ν). In
fact, D(µ, ν) = E(µ, ν) (see problem 5.4◦), but we require only the inequality.

Now, for each ν in N , let ν̄ be the measure in M(Y ) such that, for any
borel subset Z of Y , ν̄(Z) := ν(Z)/ν(Y ). For each f in L(X), if [[f ]] ≤ 1
(indeed, if ‖f‖ ≤ 1) then:

|

∫

X

f(x) · ν(dx) −

∫

X

f(x) · ν̄(dx)| ≤ ǫ+ |

∫

Y

f(x) · ν(dx) −

∫

Y

f(x) · ν̄(dx)|

≤ ǫ+

∫

Y

|(1−
1

ν(Y )
)f(x)| · ν(dx)

≤ ǫ+ (1 − ν(Y ))



54 2 SPACES OF MEASURES

Hence, D(ν, ν̄) ≤ 2ǫ.
Since M(Y ) is totally bounded with respect to E, we may introduce a

finite subfamily P of N such that, for any ν in N , there is some π in P for
which E(ν̄, π̄) ≤ ǫ. Hence, for any ν in N , there is some π in P for which
D(ν, π) ≤ 5ǫ.

We conclude that N is totally bounded.

05◦ Conversely, let us assume thatN is totally bounded. Let ǫ be any positive
real number. Let j be any positive integer. Since X is separable, we may
introduce countably infinite coverings:

U1, U2, U3, . . . and V1, V2, V3, . . .

of X such that, for each positive integer k, Uk is a nonempty closed subset of
X , d(Uk) ≤ 1/j, Uk ⊆ Vk, Vk is an open subset of X , 1/j ≤ d(Uk, X\Vk), and
d(Vk) ≤ 3/j. For each positive integer ℓ, let:

Ūℓ :=

ℓ
⋃

k=1

Uk

V̄ℓ :=
ℓ
⋃

k=1

Vk

We note that 1/j ≤ d(Ūℓ, X\V̄ℓ).
Since N is totally bounded, we may introduce a finite subfamily P of N

such that, for any ν in N , there is some π in P such that D(ν, π) ≤ (1/j2j)ǫ.
Obviously, we may introduce a positive integer ℓ such that, for each π in P ,
π(X\Ūℓ) ≤ (1/2j)ǫ.

Now let ν be any measure in N . We claim that ν(X\V̄ℓ) ≤ (3/2j)ǫ.
Thus, let π be a measure in P for which D(ν, π) ≤ 1/(j2j)ǫ. Let f be the
function in L(X) defined as follows:

f := dŪℓ,X\V̄ℓ

With reference to article 1.4◦, we note that [[f ]] ≤ (1 + j), that 0 ≤ f ≤ 1,
and that f is constantly 0 on Ūℓ and constantly 1 on X\V̄ℓ. We have:

ν(X\V̄ℓ) ≤

∫

X

f(x) · ν(dx)

≤

∫

X

f(x) · π(dx) + (1 + j)(1/j2j)ǫ

≤ (1/2j)ǫ+ (2/2j)ǫ

≤ (3/2j)ǫ
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Finally, let Yj stand for the (closed) subset V̄ℓ of X just obtained. Of
course, the (nonempty) sets:

V1, V2, . . . , Vℓ

comprise a finite covering of Yj such that, for each index k (1 ≤ k ≤ ℓ),
d(Vk) ≤ 3/j. Let Y := ∩∞

j=1Yj . Clearly, Y is (closed and) totally bounded.
Moreover, for each ν in N , ν(X\Y ) ≤ 3ǫ.

We conclude that N satisfies the condition of Prohorov. •

The Little Theorem of Prohorov

06◦ Of course, for any ν in M(X), the subset N := {ν} of M(X) is totally
bounded. Hence, for any positive real number ǫ, there is some closed totally
bounded subset Y of X such that ν(X\Y ) ≤ ǫ. We will refer to this result as
the Little Theorem of Prohorov.

Completeness

07◦ Let us prove that the property of completeness carries over from X to
M(X). Of course, it will follow that if X is pōlish then M(X) is pōlish, and
conversely.

Theorem 24 If X is complete then M(X) is complete.

08◦ Let {µj}∞j=1 be a cauchy sequence in M(X). Thus, for any positive real
number ǫ, there is a positive integer ℓ such that, for any positive integers j
and k, if ℓ ≤ j and ℓ ≤ k then D(µj , µk) ≤ ǫ. The last inequality means that,
for any f in L(X), if [[f ]] ≤ 1 then:

|

∫

X

f(x) · µj(dx)−

∫

X

f(x) · µk(dx)| ≤ ǫ

Clearly, for any f in L(X), the sequence:

∫

X

f(x) · µj(dx) (j ∈ Z
+)

of complex numbers is cauchy. Let us introduce the complex-valued function
φ defined on L(X) as follows:

φ(f) := lim
j→∞

∫

X

f(x) · µj(dx) (f ∈ L(X))
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Clearly, φ is a normalized positive linear functional on L(X). That is, φ is
linear; for any f in L(X), if 0 ≤ f then 0 ≤ φ(f); and φ(1) = 1. We will
prove that there exists a measure ν in M(X) such that:

φ(f) =

∫

X

f(x) · ν(dx) (f ∈ L(X))

It will follow that:
lim
j→∞

µj = ν

09◦ To that end, let us consider a special condition of convergence, satisfied
by φ. Thus, let {fk}

∞
k=1 be a sequence in B(X). Let us say that {fk}

∞
k=1

is a daniell sequence iff, for each positive integer k, 0 ≤ fk+1 ≤ fk ≤ 1 and
{fk}∞k=1 converges pointwise to 0. Let us say that φ satisfies the condition of
Daniell iff, for each daniell sequence {fk}∞k=1 in L(X):

lim
k→∞

φ(fk) = 0

Let us prove that φ satisfies the condition of Daniell. Let {fk}
∞
k=1 be a daniell

sequence in L(X). Let ǫ be any positive real number. Of course, the terms
of the cauchy sequence {µj}∞j=1 form a totally bounded subset of M(X). By
the Theorem of Prohorov (Theorem 23), we may introduce a totally bounded
closed subset Y of X such that, for each positive integer j, µj(X\Y ) ≤ ǫ.
Since X is complete, Y is in fact compact.

10◦ We will copy the familiar argument of Dini to show that {fk}∞k=1 con-
verges uniformly to 0 on Y . Thus, let y be any member of Y . Since {fk(y)}∞k=1

converges to 0, we may introduce a positive integer k(y) such that fk(y)(y) < ǫ.
In turn, we may introduce a neighborhood V (y) of y in X such that, for any
x in V (y), fk(y)(x) < ǫ. Since Y is compact, there must exist finitely many
members y1, y2, . . ., and yq of Y such that Y ⊆ ∪q

p=1V (yp). Let ℓ be the
largest among the positive integers k(y1), k(y2), . . ., and k(yq). Clearly, for
any x in Y , fℓ(x) < ǫ. Hence, for any positive integer k, if ℓ ≤ k then, for any
x in Y , 0 ≤ fk(x) < ǫ.

Finally, for any positive integers j and k, if ℓ ≤ k then:

0 ≤

∫

X

fk(x) · µj(dx)

≤

∫

X\Y

1 · µj(dx) +

∫

Y

fℓ(x) · µj(dx)

≤ ǫ+ ǫ

As a result:
lim
k→∞

φ(fk) = 0
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11◦ Now we are in a position to invoke a suitable instance of the Theorem of
Daniell and Stone, to produce the measure ν. We will review this theorem in
the following article. •

The Theorem of Daniell and Stone

12◦ We recall that the real-valued functions in L(X) form a lattice. Moreover,
for each real number r, the corresponding constant function r defined on X
lies in L(X).

Theorem 25 For each normalized positive linear functional φ on L(X), if
φ satisfies the condition of Daniell then there is precisely one normalized finite
borel measure ν defined on X such that:

φ(f) =

∫

X

f(x) · ν(dx) (f ∈ L(X))

At the outset, let us note that such a measure ν would be unique. In fact,
for any two such measures ν1 and ν2, one would have D(ν1, ν2) = 0, hence
ν1 = ν2.

13◦ Let us describe ν. To that end, we introduce the subspace [ 0, 1) of R
and form the topological product X × [ 0, 1). Let Π be the (first coordinate)
projection mapping carrying X × [ 0, 1) to X . We will describe a normalized
finite borel measure ρ on the (derived) borel space X × [ 0, 1) for which ν :=
Π∗(ρ) satisfies the theorem. It will turn out that ρ = ν ⊗ λ, where λ is the
lebesgue measure on [0, 1).

Let f and g be any functions in L(X) such that 0 ≤ f ≤ g ≤ 1. Let
[[f, g〉〉 denote the corresponding (borel) subset of X × [ 0, 1) consisting of all
ordered pairs (x, t) such that f(x) ≤ t < g(x). Let G be the family consisting
of all such sets. Of course, [[0, 1〉〉 = X × [0, 1). We note that:

[[0, 1〉〉\[[f, g〉〉 = [[0, f〉〉 ∪ [[g, 1〉〉

[[f ′, g′〉〉 ∩ [[f ′′, g′′〉〉 = [[f ′ ∨ f ′′, (f ′ ∨ f ′′) ∨ (g′ ∧ g′′)〉〉

Hence, the family of all finite unions of sets in G is a subalgebra of the given
borel algebra on X × [0, 1).

Let Y be any open subset of X . Let f be a function in L(X) such that
0 ≤ f ≤ 1 and such that, for any x in X , x ∈ Y iff 0 < f(x). [ See article
1.4◦. ] Let t be any real number for which 0 ≤ t ≤ 1. For each positive integer
j, let:

hj := (jf) ∧ 1
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By inspection, one can show that the sets:

[[0, th1〉〉, [[0, th2〉〉, [[0, th3〉〉, . . .

in G form an increasing sequence, and that:

(•) Y × [0, t) =

∞
⋃

j=1

[[0, thj〉〉

This relation implies in particular that G generates the given borel algebra on
X × [0, 1).

Now let f and g be any functions in L(X) such that 0 ≤ f ≤ g ≤ 1, and
let {fj}∞j=1 and {gj}∞j=1 be any sequences of functions in L(X) such that, for
each positive integer j, 0 ≤ fj ≤ gj ≤ 1. Let us assume that the sets:

[[f1, g1〉〉, [[f2, g2〉〉, [[f3, g3〉〉, . . .

in G are mutually disjoint, and that:

[[f, g〉〉 =
∞
⋃

j=1

[[fj , gj〉〉

Clearly, for each x in X , the sets:

[f1(x), g1(x)), [f2(x), g2(x)), [f3(x), g3(x)), . . .

in [0, 1) are mutually disjoint, and:

[f(x), g(x)) =

∞
⋃

j=1

[fj(x), gj(x))

Hence:

g(x)− f(x) =

∞
∑

j=1

(gj(x)− fj(x))

For each positive integer k, let:

hk := (g − f)−
k
∑

j=1

(gj − fj)

Clearly, {hk}∞k=1 is a daniell sequence in L(X). By hypothesis:

(◦) φ(g − f) =

∞
∑

j=1

φ(gj − fj)
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At this point, we may introduce a normalized finite borel measure ρ on
X × [ 0, 1), characterized by the condition that, for any functions f and g in
L(X) such that 0 ≤ f ≤ g ≤ 1:

ρ([[f, g〉〉) = φ(g − f)

Relation (◦) shows (in one stroke) that the set function ρ is well-defined on
G, that it may be extended to a finitely additive set function on the algebra
generated by G, and that it meets the condition of countable additivity jus-
tifying extension to a (normalized finite) borel measure on the borel algebra
generated by G.

Let ν := Π∗(ρ). That is, for each borel subset Z of X :

ν(Z) := ρ(Z × [0, 1))

Let λ be the lebesgue measure on [0, 1). Let Y be any open subset of X and
let t be any real number for which 0 ≤ t ≤ 1. By relation (•), we have:

ρ(Y × [0, t)) = lim
j→∞

ρ([[0, thj〉〉)

= lim
j→∞

φ(thj)

= t lim
j→∞

φ(hj)

= t lim
j→∞

ρ([[0, hj〉〉)

= t ρ(Y × [0, 1))

= ν(Y )λ([0, t))

Now, by simple approximations, one can easily show that ρ = ν ⊗ λ.

14◦ Finally, let f be any function in L(X) for which 0 ≤ f ≤ 1. We apply
the Theorem of Fubini to complete the proof of the theorem:

φ(f) = ρ([[0, f〉〉)

=

∫

X×[ 0,1)

1[[ 0,f〉〉(x, t) · ρ(d(x, t))

=

∫

X

[

∫

[ 0,1)

1[[ 0,f〉〉(x, t) · λ(dt)
]

· ν(dx)

=

∫

X

f(x) · ν(dx)

•

The Theorem of Riesz
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15◦ For later reference, let us note that if X is compact then the Theorem of
Daniell and Stone coincides with the following Theorem of Riesz.

Theorem 26 If X is compact then, for any normalized positive linear func-
tional φ defined on L(X), φ necessarily satisfies the condition of Daniell and
hence there is precisely one normalized finite borel measure ν defined on X
such that:

φ(f) =

∫

X

f(x) · ν(dx) (f ∈ L(X))

To prove this result, one need only apply the argument of Dini, embedded in
the proof of Theorem 24. See article 10◦. •

16◦ Both the Theorem of Daniell and Stone and the Theorem of Riesz apply
just as well (perhaps more naturally) to C(X) as to L(X).

17◦ Sometimes the natural domain for the functional φ is not the full algebra
L(X) but the cone L◦(X) in L(X) consisting of all functions f such that
0 ≤ f . The values of φ would be nonnegative real numbers and the coefficients
figuring in the condition of linearity for φ would be nonnegative real numbers.
In such a context, both the Theorem of Daniell and Stone and the Theorem
of Riesz would still apply. One would simply extend φ to a (normalized)
positive linear functional on the full algebra L(X), by invoking the following
decomposition of (real-valued) functions in L(X):

f = f+ − f−

where f+ := f ∨ 0 and f− := (−f) ∨ 0 are the positive and negative parts of
f in L◦(X).

Similar observations apply to the algebra C(X) and to the cone C◦(X)
in C(X).

Compactness

18◦ By the Theorem of Bolzano and Weierstrass, a metric space is compact
iff it is totally bounded and complete. Recalling Theorems 22 and 24, we
obtain the following important result.

Theorem 27 If X is compact then M(X) is compact.

The converse assertion follows from the properties of the natural embedding
of X in M(X).

2.3 THE BOREL SPACE M(X)
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The Continuous Mapping F∗

01◦ Let X1 and X2 be separable metrizable topological spaces. Let F be a
continuous mapping carryingX1 to X2. Let F∗ be the corresponding mapping
carrying M(X1) to M(X2), defined in the usual manner:

F∗(µ)(Z) := µ(F−1(Z)) (µ ∈ M(X1))

where Z is any borel subset of X2. We contend that F∗ is a continuous
mapping.

Clearly:

(•)

∫

X1

g(F (x)) ·µ(dx) =

∫

X2

g(y) ·F∗(µ)(dy) (µ ∈ M(X1), g ∈ C(X2))

Let {µj}∞j=1 be a sequence of measures in M(X1) and let µ be a measure in
M(X1). By the relation (•) and by the Portmanteau Theorem (Theorem 20),
if {µj}∞j=1 converges to µ then {F∗(µj)}∞j=1 converges to F∗(µ). Hence, F∗ is
continuous.

02◦ Obviously, if F is a homeomorphism then F∗ is a homeomorphism.

03◦ Clearly, if X1 is pōlish and if F is bijective (hence a borel isomorphism)
then M(X1) is pōlish and F∗ is bijective. It follows that, for any separable
metrizable topological space X , if X is standard then M(X) is standard, and
conversely.

With slightly greater effort, one can prove the corresponding result for
analytic spaces.

Theorem 28 For any separable metrizable topological space X , if X is
analytic then M(X) is analytic, and conversely.

One may apply the Cross Section Theorem of von Neumann (Theorem 18)
and the Theorem on Universal Measurability (Theorem 19) to show that if
F is surjective then F∗ is surjective. Thus, let F be surjective and let G be
an analytic cross section of F . For each measure ν in M(X2), let µ be the
measure in M(X1) defined as follows:

µ(Y ) := ν̄(G−1(Y ))

where ν̄ is the completion of ν and where Y is any borel subset of X1. [ See
article 1.7.11◦. ] Clearly, F∗(µ) = ν, because F · G is the identity mapping
carrying X2 to itself. Hence, F∗ is surjective. •

The Borel Mapping F∗
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04◦ Now let us consider the more general case in which F is a borel mapping
carryingX1 to X2. Of course, we may define the mapping F∗ carryingM(X1)
to M(X2) just as before. Moreover, relation (•) in article 1◦ persists:

(•)

∫

X1

g(F (x)) ·µ(dx) =

∫

X2

g(y) ·F∗(µ)(dy) (µ ∈ M(X1), g ∈ B(X2))

We plan to prove that F∗ is a borel mapping.

05◦ Let us first collect certain useful information. Let X be a separable
metrizable topological space. For each f in B(X), let Ef be the (bounded
complex-valued) evaluation function defined on M(X) as follows:

Ef (µ) :=

∫

X

f(x) · µ(dx) (µ ∈ M(X))

By the Portmanteau Theorem (Theorem 20), for any f in C(X), Ef is con-
tinuous. Hence, for any f in C(X), Ef is borel. We claim that, for any f in
B(X), Ef is borel.

Thus, let E(X) denote the subfamily of B(X) consisting of all functions
f such that Ef is borel. Clearly, E(X) is a baire subfamily of B(X), which is
to say that C(X) ⊆ E(X), E(X) is a linear subspace of B(X), and, for each
sequence {fk}∞k=1 in E(X), if {fk}∞k=1 is bounded under the uniform norm
and pointwise convergent on X then the pointwise limit f of {fk}∞k=1 lies in
E(X). To prove the last of the properties, one need only apply the Dominated
Convergence Theorem of Lebesgue to show that the sequence:

Efk (k ∈ Z
+)

converges pointwise on M(X) to Ef .
Let F (X) be the smallest baire subfamily of B(X). Obviously, F (X) ⊆

E(X) ⊆ B(X). We will prove that F (X) = B(X). To that end, we recall
that, for any f in B(X), there exists a sequence {fk}∞k=1 of simple functions
in B(X) bounded under the uniform norm and pointwise (indeed, uniformly)
convergent to f . Therefore, we need only prove that, for any borel subset Y
of X , 1Y lies in F (X).

Thus, for any f in F (X), let Ff (X) be the subfamily of B(X) consisting
of all functions g such that fg lies in F (X). Clearly, if f lies in C(X) then
Ff (X) is a baire subfamily of B(X). Hence, F (X) ⊆ Ff (X). It follows that,
for any f in C(X) and for any g in F (X), fg lies in F (X). In turn, for any
g in F (X), Fg(X) is a baire subfamily of B(X). Hence, F (X) ⊆ Fg(X). We
infer that F (X) is a subalgebra of B(X).

Now let C be the family of all borel subsets Y of X such that 1Y lies in
F (X). Since F (X) is both a baire subfamily and a subalgebra of B(X), it is
plain that C is a borel algebra on X . Moreover, for each closed subset Z of X ,
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we may (as usual) introduce a sequence {fk}∞k=1 in C(X) which is bounded
under the uniform norm and which converges pointwise to 1Z . Hence, T ⊆ C.
Therefore, C = B.

We conclude that, for any f in B(X), Ef is borel.

06◦ Let d be a metric on X defining the given topology and let L(X) be
the corresponding lipschitz algebra on X . Let X̄ be any separable metrizable
topological space. The following theorem provides useful characterizations of
borel mappings carrying X̄ to M(X).

Theorem 29 For any mapping F carrying X̄ to M(X), the following con-
ditions are mutually equivalent:

(1) F is borel

(2) for each f in L(X), Ef · F is a (bounded complex-valued) borel
function on X̄

(3) for each f in B(X), Ef · F is a (bounded complex-valued) borel
function on X̄

Clearly, (1) implies (2). We will prove that (2) implies (3) and (3) implies
(1). For enlightenment, one should try to drive the argument in what would
appear to be the more natural opposite direction.

Let us assume (2). Let E(X) denote the subfamily of B(X) consisting
of all functions f such that Ef · F is borel. By imitating the preliminary
argument just completed, one may show that E(X) = B(X). One need only
systematically replace C(X) by L(X). We conclude that (2) implies (3).

Now let us assume (3). By article 1.12◦, we may introduce a countable
uniformly bounded subfamily T of B(X) (in fact, of C(X)) and a fortet metric
D on M(X), related as follows:

D(µ, ν) := sup
f∈T

|Ef (µ)− Ef (ν) | ((µ, ν) ∈ M(X)×M(X))

Let ν be any measure in M(X) and let ǫ be any positive real number. Let
N̄ǫ(ν) be the neighborhood of ν in M(X) consisting of all measures µ for
which D(µ, ν) ≤ ǫ. In turn, let ω be any complex number and let N̄ǫ(ω) be
the neighborhood of ω in C consisting of all complex numbers τ for which
|τ − ω| ≤ ǫ. By inspection, one can show that:

F−1(N̄ǫ(ν)) =
⋂

f∈T

(Ef · F)−1(N̄ǫ(Ef (ν)))

Hence, F−1(N̄ǫ(ν)) is a borel subset of X̄ . It follows easily that F is borel.
We conclude that (3) implies (1). •
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07◦ For any borel subset Y of X , we may take f to be 1Y . The evaluation
function Ef would have the form:

EY (µ) := µ(Y ) (µ ∈ M(X))

As a supplement to Theorem 29, one can easily show that F is a borel mapping
carrying X̄ to M(X) iff, for any borel subset Y of X , the function EY · F is
borel. Of course:

(EY · F)(x̄) := F(x̄)(Y ) (x̄ ∈ X̄)

08◦ Let us return to the context of article 4◦. Taking X̄ to be M(X1), X to
be X2, and F to be F∗, we may apply Theorem 29 to show that F∗ is a borel
mapping. Thus, let g be any function in B(X2). By relation (•) in article 4◦:

Eg · F∗ = Eg·F

Hence, Eg · F∗ is a (bounded complex-valued) borel function on M(X1). It
follows that F∗ is a borel mapping.

09◦ Obviously, if F is a borel isomorphism then F∗ is a borel isomorphism.

10◦ Now it is plain that, for any separated countably generated borel space
X , the family M(X) of all normalized finite borel measures defined on X may
be unambiguously viewed as a separated countably generated borel space. In
fact, one may introduce a separable metrizable topological space X for which
X is the derived borel space, form the separable metrizable topological space
M(X), then derive the separated countably generated borel space M(X).
The borel space M(X) would be the same, no matter what parent topological
space X be chosen.

Finally, X is standard iff M(X) is standard, and X is analytic iff M(X)
is analytic.

2.4 DISCRETE AND CONTINUOUS MEASURES

Definitions

01◦ Let us consider the decomposition of a given measure into its continuous
and discrete parts.

Let X be a separable metrizable topological space. Let µ be any measure
in M(X). One says that µ is continuous iff, for each x in X , µ({x}) = 0.
One says that µ is discrete iff there exists a countable subset Z of X such
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that µ(Z) = 1. When µ is neither continuous nor discrete, one says that µ is
mixed .

02◦ Let M c(X) and Md(X) be the subspaces of M(X) consisting of all con-
tinuous and of all discrete measures in M(X). Let M̄(X) be the subspace of
M(X) consisting of all mixed measures in M(X):

M̄(X) := M(X) \ (M c(X) ∪Md(X))

Theorem 30 For any separable metrizable topological space X , M c(X),
M̄(X), and Md(X) are borel subsets of M(X).

Let X̂ be a pōlish extension of X and let I be the natural inclusion mapping
carrying X to X̂. Clearly:

M c(X) = I−1
∗ (M c(X̂))

M̄(X) = I−1
∗ (M̄(X̂))

Md(X) = I−1
∗ (Md(X̂))

Hence, in our current context, we may assume that X itself is pōlish.

03◦ Let ǫ be any positive real number. Let Mǫ(X) be the subspace of M(X)
consisting of all measures µ for which there exists some x in X such that
ǫ ≤ µ({x}). We claim that Mǫ(X) is a closed subset of M(X). Thus, let
{µj}∞j=1 be a sequence in Mǫ(X) and let µ be a measure in M(X). Let us
assume that {µj}∞j=1 converges to µ. For each positive integer j, let xj be a
member of X for which ǫ ≤ µ({xj}). By the Theorem of Prohorov (Theorem
23), we may introduce a compact subspace Y of X such that, for any positive
integer j, µj(X\Y ) < ǫ. Hence, for each positive integer j, xj ∈ Y . Now we
may introduce a member x of Y and a subsequence {yk}∞k=1 of the sequence
{xj}∞j=1 such that {yk}∞k=1 converges to x. Let Z be any closed neighborhood
of x in X . By the Portmanteau Theorem (Theorem 20), ǫ ≤ µ(Z). Hence,
ǫ ≤ µ({x}), so that µ ∈ Mǫ(X). We conclude that Mǫ(X) is a closed subset
of M(X).

The foregoing result and the following relation show that M c(X) is a
borel subset (in fact, a Gδ-subset) of M(X):

M c(X) = M(X) \ (
∞
⋃

j=1

M1/j(X) )

Paramterization of Md(X)
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04◦ Now let µ be any measure in Md(X). Let Z be the subset ofX consisting
of all z for which 0 < µ({z}). Of course, Z is countable and µ(Z) = 1. For
any positive integer n, let Md

n(X) be the subspace of M(X) consisting of all
measures µ in Md(X) for which the corresponding set Z is finite and contains
precisely n members. In turn, let Md

∞(X) be the subspace ofM(X) consisting
of all measures µ in Md(X) for which the corresponding set Z is countably
infinite.

The subspaces of M(X) just defined comprise a partition of Md(X):

Md
∞(X); . . . , Md

3 (X), Md
2 (X), Md

1 (X)

We will show that each of the displayed sets is borel.
To that end, we will regard X as a borel subset of R, so that we may

invoke the given linear order relation on R. [ See Theorem 14. ]
For any positive integer n, let An be the borel subset of Xn ×R

n con-
sisting of all members (ξ, ω) such that:

0 < ωk ≤ ωj (1 ≤ j < k ≤ n)

∑n
j=1 ωj = 1

ξj 6= ξk (1 ≤ j < k ≤ n)

ωk = ωj =⇒ ξk < ξj (1 ≤ j < k ≤ n)

Let Fn be the mapping carrying An to M(X), defined as follows:

Fn(ξ, ω) :=

n
∑

j=1

ωj∆(ξj) ((ξ, ω) ∈ An)

Obviously, Fn is injective and Fn(An) = Md
n(X). By Theorem 29, Fn is borel.

In the usual manner, it follows that Md
n(X) is a standard subspace, hence a

borel subset of M(X).
Let F d

n be the contraction of Fn to Md
n(X). By inverting F d

n , we obtain
the following array of borel mappings carrying Md

n(X) to X and to R:

Υj
n (1 ≤ j ≤ n); Ωj

n (1 ≤ j ≤ n)

By definition:

Fn(Υ
1
n(µ), . . . ,Υ

n
n(µ),Ω

1
n(µ), . . . ,Ω

n
n(µ)) = µ (µ ∈ Md

n(X))

Hence, the displayed array of borel mappings serves to isolate the support
and the values of any given measure in Md

n(X). These mappings will prove
useful later.
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In turn, let A∞ be the borel subset ofX∞×R
∞ := XZ

+

×R
Z
+

consisting
of all members (ξ, ω) such that:

0 < ωk ≤ ωj (1 ≤ j < k < ∞)

∑∞
j=1 ωj = 1

ξj 6= ξk (1 ≤ j < k < ∞)

ωk = ωj =⇒ ξk < ξj (1 ≤ j < k < ∞)

Let F∞ be the mapping carrying A∞ to M(X), defined as follows:

F∞(ξ, ω) :=

∞
∑

j=1

ωj∆(ξj) ((ξ, ω) ∈ A∞)

Again, F∞ is injective, F∞(A∞) = Md
∞(X), F∞ is borel, and Md

∞(X) is a
standard subspace, hence a borel subset of M(X).

Let F d
∞ be the contraction of F∞ toMd

∞(X). By inverting F d
∞, we obtain

the following array of borel mappings carrying Md
∞(X) to X and to R:

Υj
∞ (1 ≤ j < ∞); Ωj

∞ (1 ≤ j < ∞)

By definition:

F∞(Υ1
∞(µ),Υ2

∞(µ), . . . ; Ω1
∞(µ),Ω2

∞(µ), . . .) = µ (µ ∈ Md
∞(X))

Hence, the displayed array of borel mappings serves to isolate the support
and the values of any given measure in Md

∞(X). These mappings will prove
useful later. •

Mixed Measures

05◦ Again let X be a separable metrizable topological space. Of course, if
X is countable then M c(X) is empty and Md(X) = M(X). Let us assume
that X is uncountable. It may yet happen that M c(X) is empty (and hence
that Md(X) = M(X)). Let us assume that M c(X) is not empty. That would
necessarily be so if X is analytic. [ See problem 5.8◦. ]

Let Θ be the mapping carryingM c(X)×(0, 1)×Md(X) toM(X), defined
as follows:

Θ(µ′, s, µ′′) := sµ′ + (1− s)µ′′ ((µ′, s, µ′′) ∈ M c(X)× (0, 1)×Md(X))

By the Portmanteau Theorem (Theorem 20), Θ is continuous. Moreover, Θ
carries M c(X)× (0, 1)×Md(X) bijectively to M̄(X).
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Now let X be analytic, so that Θ carries M c(X)× (0, 1)×Md(X) borel
isomorphically to M̄(X). From the inverse of the contraction of Θ to M̄(X),
we obtain the borel mappings:

Θc(µ) := µ′

Θd(µ) := µ′′
(µ ∈ M̄(X))

carrying M̄(X) to M c(X) and to Md(X). By design, these mappings isolate
the continuous part µc := µ′ and the discrete part µd := µ′′ of any given
measure µ in M̄(X). We also obtain the borel mapping:

Σ(µ) := s (µ ∈ M̄(X))

carrying M̄(X) to (0, 1). By definition:

(•) Σ(µ)Θc(µ) + (1− Σ(µ))Θd(µ) = µ (µ ∈ M̄(X))

2.5 PROBLEMS

Regular Measures

01◦ Let X be a separable metrizable topological space and let µ be a nor-
malized finite borel measure defined on X . Let Z be any subset of X . One
says that Z is regular with respect to µ iff, for any positive real number ǫ,
there exist a closed subset Y ′ of X and an open subset Y ′′ of X such that
Y ′ ⊆ Z ⊆ Y ′′ and µ(Y ′′\Y ′) < ǫ. Prove that the family C of all subsets of
X regular with respect to µ is a borel algebra on X . Note that every closed
subset of X is regular. Conclude that every borel subset of X is regular. One
summarizes this conclusion by saying that µ itself is regular .

Separability of M(X)

02◦ Let X be a separable metrizable topological space. Let Y be a countable
dense subset of X . Let N be the subset of M(X) consisting of all measures
ν for which there exists a finite subset Z of Y such that ν(Z) = 1 and such
that, for each z in Z, ν({z}) is a rational number. Note that N is countable.
Prove that N is dense in M(X). Conclude that M(X) is separable.

Extensions of Lipschitz Functions

03◦ Let X be a separable metrizable topological space and let Z be any
subspace of X . Let d be a metric on X which defines the given topology. Of
course, d determines a metric on Z by restriction. Let L(X) and L(Z) be the
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corresponding lipschitz algebras on X and Z. Prove that, for each real-valued
function h in L(Z), there is a real-valued function f in L(X) such that the
restriction of f to Z equals h and such that ‖f‖ = ‖h‖ and 〈〈f〉〉 = 〈〈h〉〉.

[ Let y be any member of X\Z and let Y := Z∪{y}. Again, d determines
a metric on Y by restriction. Let L(Y ) be the corresponding lipschitz algebra
on Y . Note that:

h(z′)− h(z′′) ≤ 〈〈h〉〉(d(z′, y) + d(y, z′′)) (z′ ∈ Z, z′′ ∈ Z)

Hence:

a′ := sup
z′∈Z

(h(z′)− 〈〈h〉〉d(z′, y)) ≤ inf
z′′∈Z

(h(z′′) + 〈〈h〉〉d(y, z′′)) =: a′′

Verify that:
J := [a′, a′′ ] ∩ [−‖h‖, ‖h‖ ] 6= ∅

Let g be the function on Y for which the restriction to Z equals h and for
which the value at y is any real number drawn from the interval J . Verify
that g lies in L(Y ) and that ‖g‖ = ‖h‖ and 〈〈g〉〉 = 〈〈h〉〉. Now apply Zorn’s
Lemma to obtain a function f in L(X) for which the restriction to Z equals
h and for which ‖f‖ = ‖h‖ and 〈〈f〉〉 = 〈〈h〉〉. ]

04◦ Let X2 be a separable metrizable topological space and let X1 be a
subspace of X2. Let I be the natural inclusion mapping carrying X1 to X2.
Let d2 be a metric on X2 which defines the given topology on X2 and let
d1 be the metric on X1 defined by restriction of d2. Let D1 and D2 be the
corresponding fortet metrics on M(X1) and M(X2). Prove that I∗ carries
M(X1) isometrically to the subspace I∗(M(X1)) of M(X2).

[ Apply the theorem on the extension of lipschitz functions, described in
the foregoing problem. The restriction to real-valued functions is no obstacle.
Thus, for any (complex-valued function) h in L(Z) and for any ν′ and ν′′ in
M(Z), one may introduce a complex number τ such that:

τ(

∫

Z

h · ν′ −

∫

Z

h · ν′′) = |

∫

Z

h · ν′ −

∫

Z

h · ν′′ |

Then:

|

∫

Z

h · ν′ −

∫

Z

h · ν′′ | =

∫

Z

g · ν′ −

∫

Z

g · ν′′

where g is the real part of τh. ]

05◦ Let X1 and X2 be separable metrizable topological spaces. Let Π be the
mapping carryingM(X1)×M(X2) to M(X1×X2), defined (in the usual way)
by forming the product of two measures:

Π(µ1, µ2) := µ1 ⊗ µ2 ((µ1, µ2) ∈ M(X1)×M(X2))
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Prove that Π is continuous.
[ Let d1 and d2 be metrics onX1 andX2 which define the given topologies

on X1 and X2. Let d be the metric on X1 ×X2 defined as follows:

d((x′, y′), (x′′, y′′)) := d1(x
′, x′′) + d2(y

′, y′′)

where x′ and x′′ are any members of X1 and where y′ and y′′ are any members
of X2. Of course, d defines the product topology on X1×X2. Let D1, D2, and
D be the corresponding fortet metrics on M(X1), M(X2), and M(X1 ×X2).
Prove that:

D(µ′ ⊗ ν′, µ′′ ⊗ ν′′) ≤ D1(µ
′, µ′′) +D2(ν

′, ν′′)

where µ′ and µ′′ are any measures in M(X1) and where ν′ and ν′′ are any
measures in M(X2). ]

06◦ Let X be a separable metrizable topological space. Let E be the mapping
carrying M(X)×X to [0, 1], defined as follows:

E(µ, x) := µ({x}) ((µ, x) ∈ M(X)×X)

Prove that E is borel.
[ Note that:

E(µ, x) = (µ⊗∆(x))(W ) ((µ, x) ∈ M(X)×X)

where W is the diagonal subset of X ×X . ]

Continuous Measures

07◦ Let X be a separable metrizable topological space. Let M c(X) be the
subspace of M(X) consisting of all continuous normalized finite borel mea-
sures on X . [ See article 4.2◦. ] Show by example that X may be uncountable
but M c(X) may be empty.

[ By the following procedure, one may design an uncountable subspace X
of the canonical topological space L such that, for any compact subspace Z of
L, X ∩ Z is countable. One may then apply the Little Theorem of Prohorov
(see article 2.6◦) to show that M c(X) is empty.

Under the Continuum Hypothesis, L and the first uncountable ordinal
Ω have the same cardinality. Hence, we may introduce a linear order relation
≺ on L such that, for any m in L, the initial segment L

m defined by m
is countable. In this context, Lm consists of all members ℓ of L for which
ℓ � m. For any m in L, let θm be a mapping carrying Z

+ to L such that
θm(Z+) = L

m. In turn, let λm be the member of L defined as follows:

λm
j := θm(j)(j) + 1 (j ∈ Z

+)
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Finally, let X be the subset of L consisting of all members of the form λm,
where m runs through L. Show that X is uncountable and that, for any
compact subspace Z of L, X ∩ Z is countable. For the first conclusion, one
should note that, under the relation ≺, every countable subset of L is bounded
above. For the second conclusion, one should prove that, for any ℓ and m in
L, if:

λm
j ≤ ℓj (j ∈ Z

+)

then m � ℓ. ]

08◦ In context of the foregoing problem, prove that if X is uncountable and
analytic then M c(X) is not empty.

[ Apply the Embedding Theorem (Theorem 13) to show that there is a
borel (subset and) subspace Y of X such that Y and L are borel isomorphic,
then note that M c(L) is not empty. ]

The Theorem of Caratheodory

09◦ Let X be any pōlish topological space X and let µ be any normalized
finite measure on X . Let I := [0, 1 ] and let λ be the lebesgue measure on I.
Prove that if µ is continuous then there exist a Gδ-subset X

′ ofX , a countably
infinite subset I ′′ of I, and a homeomorphism H ′ carrying X ′ to I ′ := I\I ′′

such that (H ′)∗(µ
′) = λ′, where µ′ and λ′ are the restrictions of µ and λ to

X ′ and I ′. Obviously, λ(I ′) = 1 and µ(X ′) = 1.
[Without changing the sense of the theorem, one may assume that:

(◦) for any open subset Y of X , if Y 6= ∅ then 0 < µ(Y )

Let d be a pōlish metric on X . Let V be any nonempty open subset of X and
let ǫ be any positive real number. Show that there exists a countably infinite
family W of mutually disjoint nonempty open subsets of X such that, for any
W in W , clo(W ) ⊆ V , d(W ) ≤ ǫ, and µ(W ) ≤ ǫ, and such that:

µ(V \
⋃

W) = 0

To produce the family W , argue as follows. With reference to article 1.11◦,
introduce a countable base Y for the given topology on X such that, for any
Y in Y, µ(per(Y )) = 0. Then introduce the (countable) algebra Z generated
by Y. Clearly:

(•) for any Z in Z, µ(per(Z)) = 0

Let x be any member of V . Since µ({x}) = 0, there must be some Yx in Y
such that clo(Yx) ⊆ V , d(Yx) ≤ ǫ, and µ(Yx) ≤ ǫ. Obviously, the various sets:

Yx (x ∈ V )
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would comprise an open covering of V . By the Theorem of Lindelöf, introduce
a countable family:

Y1, Y2, Y3, . . .

of nonempty sets in Y such that, for each index j, clo(Yj) ⊆ V , d(Yj) ≤ ǫ,
and µ(Yj) ≤ ǫ, and such that V = ∪jYj . Then pass to the countable family:

Z1 := Y1, Z2 := Y2\Y1, Z3 := Y3\(Y1 ∪ Y2), . . .

of mutually disjoint sets in Z. Obviously, for each index j, clo(Zj) ⊆ V and
µ(Zj) ≤ ǫ; moreover, if Zj 6= ∅ then d(Zj) ≤ ǫ. Finally, V = ∪jZj . Now
consider taking W to be the family of those which are nonempty among all
sets of the form int(Zj), where j runs through the relevant indices. So defined,
W would meet all the stated requirements save possibly one. At this point,
one cannot guarantee that W would be infinite.

Modify the design of W , as follows. Let x be any member of Y1. Of
course, µ({x}) = 0. Introduce a sequence:

Ȳ1, Ȳ2, Ȳ2, . . .

of (nonempty) sets in Y such that:

{x} ⊆ · · · ⊆ Ȳ3 ⊆ Ȳ2 ⊆ Ȳ1 = Y1

and such that

{x} =

∞
⋂

k=1

Ȳk

Then pass to the sequence:

Z̄1 := Ȳ1\Ȳ2, Z̄2 := Ȳ2\Ȳ3, Z̄3 := Ȳ3\Ȳ4 . . .

of mutually disjoint sets in Z. Clearly, among the various sets:

int(Z̄1), int(Z̄2), int(Z̄3), . . .

there are infinitely many which are nonempty. [ See conditions (◦) and (•). ]
Take W to be the family of those which are nonempty among the following
sets:

int(Z̄1), int(Z̄2), int(Z̄3), . . . ; int(Z2), int(Z3), int(Z4), . . .

So defined, W would meet all the stated requirements.
Display the family W as a bilateral sequence:

Wj (j ∈ Z)
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The choice of the index set Z is not whimsical. See relation (τ) below.
Now consider special instances of the foregoing construction, as follows.

Take V to be X and ǫ to be 1, to obtain a bilateral sequence:

Wj (j ∈ Z)

of mutually disjoint nonempty open subsets of X such that, for each integer
j, d(Wj) ≤ 1 and such that:

µ(X \ (
⋃

j∈Z

Wj)) = 0

For each integer j, take V to be Wj and ǫ to be 1/2, to obtain a bilateral
sequence:

Wjk (k ∈ Z)

of mutually disjoint nonempty open subsets of X such that, for each integer
k, clo(Wjk) ⊆ Wj , d(Wjk) ≤ 1/2, and µ(Wjk) ≤ 1/2, and such that:

µ(Wj \ (
⋃

k∈Z

Wjk)) = 0

Continuing inductively, form an indexed family:

Wℓ1ℓ2...ℓn (n ∈ Z
+, ℓ1, ℓ2, . . . , ℓn ∈ Z)

of mutually disjoint nonempty open subsets of X satisfying the following con-
ditions:

clo(Wℓ1ℓ2...ℓnℓn+1
) ⊆ Wℓ1ℓ2...ℓn

d(Wℓ1ℓ2...ℓn) ≤ 1/n

µ(Wℓ1ℓ2...ℓn) ≤ 1/n

µ(X \ (
⋃

ℓ1∈Z

Wℓ1)) = 0

and:
µ(Wℓ1ℓ2...ℓn \ (

⋃

ℓn+1∈Z

Wℓ1ℓ2...ℓnℓn+1
)) = 0

By the properties of the real numbers:

µ(Wℓ1ℓ2...ℓn) (n ∈ Z
+, ℓ1, ℓ2, . . . , ℓn ∈ Z)

form an indexed family:

tℓ1ℓ2...ℓn (n ∈ Z
+, ℓ1, ℓ2, . . . , ℓn ∈ Z)
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of real numbers in the open interval (0, 1) defined by the conditions:

tℓ1ℓ2...ℓn < tℓ1ℓ2...ℓnℓn+1
< tℓ1ℓ2...ℓ̄n

µ(Wℓ1ℓ2...ℓn) = tℓ1ℓ2...ℓ̄n − tℓ1ℓ2...ℓn

where ℓ̄n := ℓn + 1.
Let:

X ′ :=

∞
⋂

n=1

(
⋃

ℓ1∈Z

⋃

ℓ2∈Z

· · ·
⋃

ℓn∈Z

Wℓ1ℓ2...ℓn)

Let I ′′ be the countably infinite subset of I comprised of the various real
numbers:

tℓ1ℓ2...ℓn (n ∈ Z
+, ℓ1, ℓ2, . . . , ℓn ∈ Z)

and let:
I ′ := I\I ′′

Of course:

I ′ :=

∞
⋂

n=1

(
⋃

ℓ1∈Z

⋃

ℓ2∈Z

· · ·
⋃

ℓn∈Z

(tℓ1ℓ2...ℓn , tℓ1ℓ2...ℓ̄n) )

Clearly, the members x of X ′, ℓ of ZZ
+

, and s of I ′ stand in bijective corre-
spondence under the relations:

x ∈ Wℓ1ℓ2...ℓn

tℓ1ℓ2...ℓn < s < tℓ1ℓ2...ℓ̄n
(n ∈ Z

+)

Let H ′ be the mapping so defined carrying X ′ to I ′:

H ′(x) := s (x ∈ X ′)

Obviously, H ′ is (bijective and) continuous.
By the relation:

(τ) [ tℓ1ℓ2...ℓnℓn+1
, tℓ1ℓ2...ℓn ℓ̄n+1

] ⊆ (tℓ1ℓ2...ℓn , tℓ1ℓ2...ℓ̄n)

show that H ′ is a homeomorphism. By the usual approximation arguments,
show that (H ′)∗(µ

′) = λ′. ]

2.5 NOTES

01◦ In these notes, we will call attention to various references and we will
acknowledge sources.

02◦ R. M. Dudley, p. 340, Fortet and Mourier (1953)
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