A Space Odyssey

Thomas Wieting
Reed College, 2008

1 Objectives
 2 Space Travel
 3 Conclusions

1 Objectives

01° Let $\boldsymbol{*}$ and $\boldsymbol{*}$ be two stars at rest in an Inertial Frame F. Let d be the distance between them. Let \mathbf{S} and \mathbf{T} be a Sojourner and a Traveler, respectively, who reside on $\mathfrak{*}$. The latter proposes to travel from $\mathfrak{*}_{\boldsymbol{*}}$ to $\boldsymbol{*}$. The flight plan for \mathbf{T} requires that he fly in a straight line; that he start from rest on $\mathfrak{*}$, proceed for a period of time $\bar{\tau}$ with specified constant acceleration g, then proceed for the same period of time $\bar{\tau}$ with constant deceleration $-g$, coming to rest on $\boldsymbol{*}$; and that he immediately turn about to make the return trip in the same manner. Of course, the period of time $\bar{\tau}$ is the period of proper time, as measured by the traveler T. Our objectives are:
(o) to find relations among the variables $d, \bar{\tau}$, and g by which, given two of them, we can solve for the third
(o) given g and d, to solve for the length of the trip as measured by \mathbf{S} in the Inertial Frame \mathbf{F}

Of course, for \mathbf{T}, the length of the trip is $4 \bar{\tau}$.

2 Space Travel

02° We employ the geometric system of units, for which time and distance are measured in meters and lightspeed c is 1 . We apply the methods of Special Relativity.
03° In particular, we represent the Inertial Frame \mathbf{F} as an ordered quadruple of four-vectors:

$$
f_{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad f_{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), f_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad f_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

For any four-vectors y and z :

$$
y=y^{k} f_{k}, \quad z=z^{\ell} f_{\ell}
$$

we present the lorentzian inner product as follows:

$$
y * z=y^{0} z^{0}-y^{1} z^{1}-y^{2} z^{2}-y^{3} z^{3}
$$

04° We may describe the position of the Traveler \mathbf{T} during the first segment of his trip by the four-vector x :

$$
x(\tau)=x^{j}(\tau) f_{j}
$$

where $0 \leq \tau \leq \bar{\tau}$. The second, third, and fourth segments of the trip may be described similarly.
05° Let u and a be the corresponding four-vector velocity and four-vector acceleration:

$$
u(\tau)=x^{\circ}(\tau), \quad a(\tau)=u^{\circ}(\tau)
$$

The supercircle signifies differentiation with respect to τ. As usual:

$$
u(\tau) * u(\tau)=1, \quad u(\tau) * a(\tau)=0
$$

Of course, we may assume that:

$$
x(0)=0
$$

Since \mathbf{T} starts from rest, we have:

$$
u(0)=f_{0}
$$

Since \mathbf{T} travels with constant acceleration, we have:

$$
a(\tau) * a(\tau)=-g^{2}
$$

Since \mathbf{T} travels in a straight line, we may, without loss of generality, assume that:

$$
x^{2}(\tau)=0, \quad x^{3}(\tau)=0, \quad 1 \leq u^{0}(\tau)
$$

Hence:

$$
a(0)=g f_{1}
$$

06° At this point, we may summarize our description of the flight of \mathbf{T} in terms of a simple linear ODE:

$$
\binom{a^{0}(\tau)}{a^{1}(\tau)}=\left(\begin{array}{cc}
0 & g \\
g & 0
\end{array}\right)\binom{u^{0}(\tau)}{u^{1}(\tau)} ; \quad\binom{u^{0}(0)}{u^{1}(0)}=\binom{1}{0}
$$

The independent variable τ runs from 0 to $\bar{\tau}$. We find that::

$$
\binom{u^{0}(\tau)}{u^{1}(\tau)}=\left(\begin{array}{cc}
\cosh (g \tau) & \sinh (g \tau) \\
\sinh (g \tau) & \cosh (g \tau)
\end{array}\right)\binom{1}{0}=\binom{\cosh (g \tau)}{\sinh (g \tau)}
$$

Therefore:

$$
\binom{x^{0}(\tau)}{x^{1}(\tau)}=\binom{(1 / g) \sinh (g \tau)}{(1 / g) \cosh (g \tau)}-\binom{0}{1 / g}
$$

3 Conclusions

07° Now we may infer that $d=2 x^{1}(\bar{\tau})$, so that:
(1a) $\quad d=(2 / g)(\cosh (g \bar{\tau})-1), \quad \bar{\tau}=(1 / g) \cosh ^{-1}\left(\frac{1}{2} g d+1\right)$
In turn, one may solve the first of the foregoing relations (implicitly) for g :

$$
\begin{equation*}
g=\phi(d, \bar{\tau}) \tag{1b}
\end{equation*}
$$

By these relations, one may settle the first of the foregoing objectives.
08° Finally:

$$
\begin{equation*}
x^{0}(\bar{\tau})=\frac{1}{g} \sqrt{\left(\frac{1}{2} g d+1\right)^{2}-1} \tag{2}
\end{equation*}
$$

By this relation, one may settle the second of the foregoing objectives.
09° Convert to conventional units.

