RIEMANN/RICCI/WEYL

Thomas Wieting
Reed College, 1994

Introduction

1° We plan to explain the following canonical decomposition of the curvature tensor K :

$$
K=G \bullet\left(\frac{1}{2} R-\frac{1}{12} r G\right)+W
$$

In this context, G is the given metric tensor on space-time, K is the riemann curvature tensor defined by G, R is the ricci tensor defined by K, r is the ricci scalar, and W is the associated weyl tensor. The Kulkarni/Nomizu operator - will be defined in due course.

Various Tensors

2° We must consider tensors of riemann type and tensors of ricci type. The former are tensors L of valence $(0,4)$:

$$
L_{i j k \ell}
$$

meeting the following conditions:

$$
\begin{align*}
L_{j i k \ell} & =-L_{i j k \ell} \\
L_{k \ell i j} & =L_{i j k \ell} \tag{1}\\
L_{i j \ell k} & =-L_{i j k \ell}
\end{align*}
$$

and also the condition:

$$
\begin{equation*}
L_{i j k \ell}+L_{j k i \ell}+L_{k i j \ell}=0 \tag{2}
\end{equation*}
$$

The latter are tensors S of valence $(0,2)$:

$$
S_{i j}
$$

meeting the following condition:

$$
\begin{equation*}
S_{j i}=S_{i j} \tag{3}
\end{equation*}
$$

Of course, the metric tensor G is itself of ricci type. With regard to condition (2), one should note that the fixed index can be any one of the four.

The Basic Operators
3° Given a tensor L of riemann type, we may form a tensor $S:=c(L)$ of ricci type by the following contraction:

$$
S_{j \ell}:=G^{i p} L_{p j i \ell}
$$

Let us show that S meets condition (3):

$$
\begin{aligned}
S_{\ell j} & =G^{i p} L_{p \ell i j} \\
& =G^{p i} L_{i j p \ell} \\
& =S_{j \ell}
\end{aligned}
$$

Hence, S is a tensor of ricci type. It may happen that $c(L)=0$. In that case, one refers to L as a tensor of weyl type.

Given two tensors S and T of ricci type, we may form a tensor $L:=S \bullet T$ of riemann type as follows:

$$
L_{i j k \ell}:=S_{i k} T_{j \ell}+S_{j \ell} T_{i k}-S_{i \ell} T_{j k}-S_{j k} T_{i \ell}
$$

By routine computation, one can verify that L is a tensor of riemann type. Moreover, it is obvious that:

$$
\begin{equation*}
S \bullet T=T \bullet S \tag{4}
\end{equation*}
$$

Given a tensor S of ricci type, one may introduce the corresponding ricci scalar $s:=t(S)$, as follows:

$$
s:=G^{i j} S_{i j}
$$

Finally, for any tensor S of ricci type, we have the following basic relation:

$$
\begin{equation*}
c(G \bullet S)=2 S+s G \tag{5}
\end{equation*}
$$

Let us prove that it is so:

$$
\begin{aligned}
(c(G \bullet S))_{j \ell} & =G^{i p}\left(G_{p i} S_{j \ell}+G_{j \ell} S_{p i}-G_{p \ell} S_{j i}-G_{j i} S_{p \ell}\right) \\
& =4 S_{j \ell}+G_{j \ell} t(S)-S_{j \ell}-S_{j \ell} \\
& =2 S_{j \ell}+s G_{j \ell}
\end{aligned}
$$

In particular:

$$
c(G \bullet G)=6 G
$$

The Canonical Decomposition
4° Now let K be any tensor of riemann type. It might be the riemann curvature tensor defined by G but it might not. We contend that there exist a tensor S of ricci type and a tensor W of weyl type such that:

$$
\begin{equation*}
K=(G \bullet S)+W \tag{o}
\end{equation*}
$$

Moreover, we contend that S and W so described are unique.
To prove these contentions, we simply display the following consequence of relation (०):

$$
c(K)=2 S+s G+c(W)
$$

Let R stand for $c(K)$. Clearly, $c(W)=0$ iff:

$$
R=2 S+s G
$$

which is to say that:

$$
S=\frac{1}{2} R-\frac{1}{12} r G
$$

where $r:=t(R)$. These observations prove both contentions.

Notes

$5^{\circ} \quad$ Obviously, $R=0$ iff $K=W$.
6° One says that G is an einstein metric iff there exists a real number y such that $R=y G$. Clearly, that is so iff there exists a real number z such that $S=z G$ iff $6 S=R$. The canonical decomposition of K would take the form:

$$
K=\frac{1}{6} y(G \bullet G)+W
$$

where W is the appropriate tensor of weyl type.
7° One says that G is locally conformally flat iff, for each space-time point x, there exist a neighborhood V of x and a positive function h defined on V such that (on V) $\bar{G}:=h G$ is flat (which is to say that the riemann curvature tensor \bar{R} defined by \bar{G} equals 0 . One can prove that G is locally conformally flat iff $W=0$.
8° One defines the einstein tensor as follows:

$$
E:=R-\frac{1}{2} r G
$$

from which we obtain:

$$
\begin{aligned}
e & :=t(E)=-r \\
R & =E-\frac{1}{2} e G \\
S & =\frac{1}{2} E-\frac{1}{6} e G
\end{aligned}
$$

and hence:

$$
K=G \bullet\left(\frac{1}{2} E-\frac{1}{6} e G\right)+W
$$

