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Introduction

1°  We plan to explain the following canonical decomposition of the curva-
ture tensor K:

1 1
K=Ge(=R— — W
GO(QR 127“G)+

In this context, G is the given metric tensor on space-time, K is the riemann
curvature tensor defined by G, R is the ricci tensor defined by K, r is the ricci
scalar, and W is the associated weyl tensor. The Kulkarni/Nomizu operator
e will be defined in due course.

Various Tensors

2°  We must consider tensors of riemann type and tensors of ricci type. The
former are tensors L of valence (0,4):

Lijre
meeting the following conditions:
Ljike = —Lijke
(1) Lyeij = Lijke
Lijo = —Lijie
and also the condition:
(2) Lijie + Lijkie + Liije = 0

The latter are tensors S of valence (0, 2):
Sij

meeting the following condition:

(3) Sji = Sij

Of course, the metric tensor G is itself of ricci type. With regard to condition
(2), one should note that the fixed index can be any one of the four.



The Basic Operators

3° Given a tensor L of riemann type, we may form a tensor S := ¢(L) of
ricci type by the following contraction:

Sjg = Giprjig
Let us show that S meets condition (3):
Sej = G Lyeij

= G" Lijpe

Hence, S is a tensor of ricci type. It may happen that ¢(L) = 0. In that case,
one refers to L as a tensor of weyl type.

Given two tensors S and T of ricci type, we may form a tensor L := SeT
of riemann type as follows:

Lijie := SirTje + SjeTire — SieTjre — ST

By routine computation, one can verify that L is a tensor of riemann type.
Moreover, it is obvious that:

(4) SeT =TeS

Given a tensor S of ricci type, one may introduce the corresponding ricci
scalar s :=t(S), as follows:

S = GijSij
Finally, for any tensor S of ricci type, we have the following basic relation:
(5) c(GeS)=25+sG
Let us prove that it is so:

(c(Ge8))je = GP(GpiSjt + GjeSpi — GpeSji — G4iSpe)
= 4sz + ng t(S) — sz — Sj
=280+ 5Gje

In particular:
c¢(Ge@G) =6G



The Canonical Decomposition

4°  Now let K be any tensor of riemann type. It might be the riemann
curvature tensor defined by G but it might not. We contend that there exist
a tensor S of ricci type and a tensor W of weyl type such that:

(c) K=(GeS)+W

Moreover, we contend that S and W so described are unique.
To prove these contentions, we simply display the following consequence
of relation (o):
c(K) =254 sG + c(W)

Let R stand for ¢(K). Clearly, ¢(W) = 0 iff:
R =25+ sG

which is to say that:

1 1
where 7 := ¢(R). These observations prove both contentions.
Notes

5°  Obviously, R=0iff K = W.

6° One says that G is an einstein metric iff there exists a real number y
such that R = yG. Clearly, that is so iff there exists a real number z such
that S = zG iff 65 = R. The canonical decomposition of K would take the
form:

1
K = Ey(G oG+ W
where W is the appropriate tensor of weyl type.

7°  One says that G is locally conformally flat iff, for each space-time point
x, there exist a neighborhood V' of  and a positive function h defined on V'
such that (on V) G := hG is flat (which is to say that the riemann curvature
tensor R defined by G equals 0. One can prove that G is locally conformally

flat if W = 0.

8°  One defines the einstein tensor as follows:

E::R—%TG



from which we obtain:

and hence:



