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Introduction

1◦ We plan to explain the following canonical decomposition of the curva-
ture tensor K:

K = G • (
1
2
R − 1

12
rG) + W

In this context, G is the given metric tensor on space-time, K is the riemann
curvature tensor defined by G, R is the ricci tensor defined by K, r is the ricci
scalar, and W is the associated weyl tensor. The Kulkarni/Nomizu operator
• will be defined in due course.

Various Tensors

2◦ We must consider tensors of riemann type and tensors of ricci type. The
former are tensors L of valence (0, 4):

Lijk�

meeting the following conditions:

(1)
Ljik� = −Lijk�

Lk�ij = Lijk�

Lij�k = −Lijk�

and also the condition:

(2) Lijk� + Ljki� + Lkij� = 0

The latter are tensors S of valence (0, 2):

Sij

meeting the following condition:

(3) Sji = Sij

Of course, the metric tensor G is itself of ricci type. With regard to condition
(2), one should note that the fixed index can be any one of the four.
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The Basic Operators

3◦ Given a tensor L of riemann type, we may form a tensor S := c(L) of
ricci type by the following contraction:

Sj� := GipLpji�

Let us show that S meets condition (3):

S�j = GipLp�ij

= GpiLijp�

= Sj�

Hence, S is a tensor of ricci type. It may happen that c(L) = 0. In that case,
one refers to L as a tensor of weyl type.

Given two tensors S and T of ricci type, we may form a tensor L := S •T
of riemann type as follows:

Lijk� := SikTj� + Sj�Tik − Si�Tjk − SjkTi�

By routine computation, one can verify that L is a tensor of riemann type.
Moreover, it is obvious that:

(4) S • T = T • S

Given a tensor S of ricci type, one may introduce the corresponding ricci
scalar s := t(S), as follows:

s := GijSij

Finally, for any tensor S of ricci type, we have the following basic relation:

(5) c(G • S) = 2S + sG

Let us prove that it is so:

(c(G • S))j� = Gip(GpiSj� + Gj�Spi − Gp�Sji − GjiSp�)
= 4Sj� + Gj� t(S) − Sj� − Sj�

= 2Sj� + sGj�

In particular:
c(G • G) = 6G
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The Canonical Decomposition

4◦ Now let K be any tensor of riemann type. It might be the riemann
curvature tensor defined by G but it might not. We contend that there exist
a tensor S of ricci type and a tensor W of weyl type such that:

(◦) K = (G • S) + W

Moreover, we contend that S and W so described are unique.
To prove these contentions, we simply display the following consequence

of relation (◦):
c(K) = 2S + sG + c(W )

Let R stand for c(K). Clearly, c(W ) = 0 iff:

R = 2S + sG

which is to say that:

S =
1
2
R − 1

12
rG

where r := t(R). These observations prove both contentions.

Notes

5◦ Obviously, R = 0 iff K = W .

6◦ One says that G is an einstein metric iff there exists a real number y
such that R = yG. Clearly, that is so iff there exists a real number z such
that S = zG iff 6S = R. The canonical decomposition of K would take the
form:

K =
1
6
y(G • G) + W

where W is the appropriate tensor of weyl type.

7◦ One says that G is locally conformally flat iff, for each space-time point
x, there exist a neighborhood V of x and a positive function h defined on V
such that (on V ) Ḡ := hG is flat (which is to say that the riemann curvature
tensor R̄ defined by Ḡ equals 0. One can prove that G is locally conformally
flat iff W = 0.

8◦ One defines the einstein tensor as follows:

E := R − 1
2
rG
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from which we obtain:
e : = t(E) = −r

R = E − 1
2
eG

S =
1
2
E − 1

6
eG

and hence:
K = G • (

1
2
E − 1

6
eG) + W
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